1. Multi-armed bandit algorithms.
 - Consistency: optimal per-round reward.
 - Robbins’ consistent algorithm:
 vanishing exploration implies consistency.
 - Upper confidence bound (UCB) algorithms
 (and a foray into concentration inequalities).
Stochastic bandit problem.

- \(k \) arms.
- Arm \(j \) has unknown reward distribution \(P_{\theta_j} \), for \(\theta_j \in \Theta \).
- Reward: \(X_{j,t} \sim P_{\theta_j} \).
- Mean reward: \(\mu_j = \mathbb{E}X_{j,1} \).
- Best: \(\mu^* = \max_{j^*=1,...,k} \mu_{j^*} \).
- Gap: \(\Delta_j = \mu^* - \mu_j \).
- Number of plays: \(T_j(s) = \sum_{t=1}^s 1[I_t = j] \).
- Pseudo-regret:
 \[
 \overline{R}_n = n \max_{j^*=1,...,k} \mu_{j^*} - \mathbb{E} \sum_{t=1}^n X_{I_t,t} = \sum_{j=1}^k \mathbb{E}T_j(n)\Delta_j.
 \]
Call a strategy consistent if

\[\frac{R_n}{n} \rightarrow 0. \]

How might we achieve consistency?

- Explore for a while, then exploit?
 But with positive probability, exploration will mislead us.
 \[\Rightarrow \] Must explore forever.
Robbin’s strategy.

Fix disjoint exploration sequences

\[1 = e_{1}^{1} < e_{2}^{1} < \cdots < e_{n}^{1} < \cdots , \]
\[2 = e_{1}^{2} < e_{2}^{2} < \cdots < e_{n}^{2} < \cdots , \]
\[\vdots \]
\[k = e_{1}^{k} < e_{2}^{k} < \cdots < e_{n}^{k} < \cdots . \]

At time \(t \), if some \(j, i \) has \(t = e_{i}^{j} \), play \(I_{t} = j \). Otherwise play

\[I_{t} = \hat{j}_{t} = \arg \max_{j} \frac{1}{T_{j}(t)} \sum_{s=1}^{t} X_{I_{s}, s} 1[I_{s} = j]. \]
Robbin’s strategy.

Since \(e_j^n \rightarrow \infty \), \(T_j(t) \rightarrow \infty \), so the strong law of large numbers shows that

\[
\hat{\mu}_j(t) := \frac{1}{T_j(t)} \sum_{s=1}^{t} X_{I_s,s} 1[I_s = j] \xrightarrow{a.s.} \mu_j,
\]

hence \(\hat{j}_t \rightarrow j^* \).

How often should we explore?

- Explore some fixed proportion of the time?
 But that proportion will always cost us.
 \(\Rightarrow \) Must explore forever, but a vanishing fraction of the time.
Robbin’s strategy.

Vanishing exploration implies consistency:

Theorem: If the exploration set up to time \(n \),

\[
E_n := \{ t \leq n : \text{some } j, i \text{ has } t = e_i^j \},
\]

satisfies \(|E_n|/n \to 0 \), then

\[
\frac{R_n}{n} = \sum_{j \neq j^*} \frac{\mathbb{E}T_j(n)}{n} \Delta_j \to 0.
\]
Robbin’s strategy.

Proof. With vanishing exploration, if $j \neq j^*$,

$$
\frac{T_j(n)}{n} = \frac{1}{n} \sum_{t=1}^{n} \left(1[\exists i \text{ s.t. } t = x_i^j] + 1[t \notin E_t, \hat{j}_t = j] \right)
$$

$$
\leq \frac{|E_n|}{n} + \frac{1}{n} \sum_{t=1}^{n} 1[\hat{j}_t = j]
$$

$$
\xrightarrow{a.s.} 0.
$$
Upper Confidence Bounds:
Use data to define an upper bound on μ_j.
Choose the arm with the largest upper bound.

- Optimism in the face of uncertainty.
- Nicely balances exploration (few pulls \Rightarrow loose upper bound \Rightarrow more likely to try it) and exploitation (when confidence intervals are small, the best arm has the best upper bound).
• We want tight upper bounds (or we waste our time on a bad arm), but
• We don’t want the bounds too tight (or we might miss a good arm).
• We shouldn’t leave an arm untried for too long (since if we are misled to wrongfully neglect an arm with a very small probability, that becomes important again after a long period of neglect).

We’ll consider estimates based on sample averages, \(\hat{\mu}_j(t) \), and concentration inequalities in terms of \textit{cumulant generating functions}. So we’ll have a brief digression to look at concentration inequalities...
Concentration inequalities.

Definition: For a random variable X with mean μ, the moment-generating function is

$$M_{X-\mu}(\lambda) = \mathbb{E} \exp(\lambda(X - \mathbb{E}X)),$$

the cumulant-generating function is

$$\Gamma_{X-\mu}(\lambda) = \log M_{X-\mu}(\lambda).$$
Definition: For a random variable X, $\psi : \mathbb{R} \to \mathbb{R}$ is a cumulant generating function upper bound if, for $\lambda > 0$,

$$\psi(\lambda) \geq \max \{ \Gamma_X(\lambda), \Gamma_{-X}(\lambda) \},$$

$$\psi(-\lambda) = \psi(\lambda).$$

The Legendre transform (convex conjugate) of ψ is

$$\psi^*(\epsilon) = \sup_{\lambda \in \mathbb{R}} (\lambda \epsilon - \psi(\lambda)).$$
Concentration Inequalities.

Theorem:

\[\Gamma_{X+c}(\lambda) = \lambda c + \Gamma_X(\lambda), \]
\[\Gamma^*_{X+c}(\epsilon) = \Gamma^*_X(\epsilon - c). \]

(Easy to check.)
Concentration Inequalities.

Theorem: For $\epsilon \geq 0$, $\mathbb{P}(X - \mathbb{E}X \geq \epsilon) \leq \exp \left(-\psi^*_{X - \mathbb{E}X}(\epsilon) \right)$.
Concentration Inequality: Proof.

\[
\log \mathbb{P} \left(X - \mathbb{E}X \geq \epsilon \right)
\]

\[
= \inf_{\lambda > 0} \log \mathbb{P} \left(\exp \left(\lambda \left(X - \mathbb{E}X - \epsilon \right) \right) \geq 1 \right) \quad \text{(exp is monotonic)}
\]

\[
\leq \inf_{\lambda > 0} \log \mathbb{E} \exp \left(\lambda \left(X - \mathbb{E}X - \epsilon \right) \right) \quad \text{(Markov’s inequality)}
\]

\[
\leq \inf_{\lambda > 0} \left(\psi_{X - \mathbb{E}X} (\lambda) - \lambda \epsilon \right) \quad \text{(cgf bound)}
\]

\[
= \inf_{\lambda \in \mathbb{R}} \left(\psi_{X - \mathbb{E}X} (\lambda) - \lambda \epsilon \right) \quad \text{(from } \epsilon > 0, \text{ definition of } \psi (-\lambda))
\]

\[
= -\psi^*_{X - \mathbb{E}X} (\epsilon).
\]
Concentration Inequalities.

Theorem: If X_1, X_2, \ldots, X_n are mean zero, i.i.d. with cgf upper bound ψ, then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ has cgf bound

$$
\psi_{\bar{X}_n}(\lambda) = n \psi \left(\frac{\lambda}{n} \right),
$$

and

$$
\psi^*_{\bar{X}_n}(\epsilon) = n \psi^*(\epsilon),
$$

hence,

$$
\mathbb{P} \left(\bar{X}_n \geq \epsilon \right) \leq \exp \left(-n \psi^*(\epsilon) \right),
$$

(Easy to check.)
Example: Gaussian

For $X \sim N(\mu, \sigma^2)$,

$$
\Gamma_{X-\mu}(\lambda) = \frac{\lambda^2 \sigma^2}{2}, \quad \Gamma^*_{X-\mu}(\epsilon) = \frac{\epsilon^2}{2\sigma^2}.
$$

For $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, it’s easy to check that the bound is tight:

$$
\lim_{n \to \infty} \frac{1}{n} \ln P(\bar{X}_n - \mu \geq \epsilon) = -\frac{\epsilon^2}{2\sigma^2}.
$$
Example: Bounded Support

Theorem: [Hoeffding’s Inequality] For a random variable $X \in [a, b]$ with $\mathbb{E}X = \mu$ and $\lambda \in \mathbb{R}$,

$$\ln M_{X-\mu}(\lambda) \leq \frac{\lambda^2(b-a)^2}{8}.$$

Note the resemblance to a Gaussian:

$$\frac{\lambda^2\sigma^2}{2} \text{ vs } \frac{\lambda^2(b-a)^2}{8}.$$

(And since P has support in $[a, b]$, $\text{Var}X \leq (b-a)^2/4$.)
Example: Hoeffding’s Inequality Proof

Define

\[A(\lambda) = \log (\mathbb{E}e^{\lambda X}) = \log \left(\int e^{\lambda x} dP(x) \right), \]

where \(X \sim P \). Then \(A \) is the log normalization of the exponential family random variable \(X_\lambda \) with reference measure \(P \) and sufficient statistic \(x \).

Since \(P \) has bounded support, \(A(\lambda) < \infty \) for all \(\lambda \), and we know that

\[A'(\lambda) = \mathbb{E}(X_\lambda), \quad A''(\lambda) = \text{Var}(X_\lambda). \]

Since \(P \) has support in \([a, b]\), \(\text{Var}(X_\lambda) \leq (b - a)^2 / 4 \). Then a Taylor expansion about \(\lambda = 0 \) (at this value of \(\lambda \), \(X_\lambda \) has the same distribution as \(X \), hence the same expectation) gives

\[A(\lambda) \leq \lambda \mathbb{E}X + \frac{\lambda^2}{2} \frac{(b - a)^2}{4}. \]
Sub-Gaussian Random Variables

Definition: X is **sub-Gaussian** with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\ln M_{X-\mu}(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}.$$

Note: Gaussian is sub-Gaussian. X sub-Gaussian iff $-X$ sub-Gaussian. X sub-Gaussian implies $P(X - \mu \geq t) \leq \exp(-t^2/(2\sigma^2))$.
Theorem: For X_1, \ldots, X_n independent, $\mathbb{E} X_i = \mu$, X_i sub-Gaussian with parameter σ^2, then for all $t > 0$,

$$P \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \geq t \right) \leq \exp \left(-\frac{nt^2}{2\sigma^2} \right).$$