
Theoretical Statistics. Lecture 8.
Peter Bartlett

1. Uniform laws of large numbers:

(a) Glivenko-Cantelli Theorem.

(b) Glivenko-Cantelli classes.
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Glivenko-Cantelli Theorem

First example of a uniform law of large numbers.

Theorem: ‖Fn − F‖
∞

as
→ 0.

Here,F is a cumulative distribution function,Fn is the empirical

cumulative distribution function,

Fn(x) =
1

n

n∑

i=1

1[Xi ≤ x],

whereX1, . . . , Xn are i.i.d. with distributionF , and

‖F − G‖∞ = supt |F (t) − G(t)|.
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Glivenko-Cantelli Theorem

Why uniform law of large numbers?

‖Fn − F‖
∞

= sup
x

|Fn(x) − F (x)|

= sup
x

|Pn(X ≤ x) − P [X ≤ x]|

as
→ 0,

wherePn is the empirical distribution that assigns mass1/n to eachXi.

The law of large numbers says that, for allx, Pn(X ≤ x)
as
→ P (X ≤ x).

The GC Theorem says that this happens uniformly overx.
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Glivenko-Cantelli Theorem: Applications

Why is it useful? Often, we construct estimators of various parameters of

interestθ(F ) by replacingF with Fn. These are calledplug-in estimators.

Examples:

1. θ(F ) = EX , whereX ∼ F . θ(F̂ ) = 1

n

∑n

i=1
Xi = PnX .

2. θ(F ) = inf{x : F (x) ≥ 1/2}, the median. More generally,

θ(F ) = inf{x : F (x) ≥ α}, theα-quantile.

θ(F̂ ) = inf

{

x :
1

n

n∑

i=1

1[Xi ≤ x] ≥ α

}

.

If θ is continuous wrt‖ · ‖∞, then we immediately getθ(F̂ )
as
→ θ(F ).
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Glivenko-Cantelli Classes

Definition: F is aGlivenko-Cantelli classfor P if

sup
f∈F

|Pnf − Pf | =: ‖Pn − P‖F
P
→ 0.

Here,P is a distribution onX , X1, . . . , Xn are drawn i.i.d. fromP , Pn is
the empirical distribution (which assigns mass1/n to each ofX1, . . . , Xn),
F is a set of measurable real-valued functions onX with finite expectation
underP , Pn − P is anempirical process, that is, a stochastic process
indexed by a class of functionsF , and‖Pn − P‖F := supf∈F |Pnf − Pf |.

The GC Theorem is a special case, withF = {1[x ≤ t] : t ∈ R} (and with
the stronger conclusion that convergence is almost sure—wesay that such
anF is a ‘strong GC class’).
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Glivenko-Cantelli Classes

Not all F are Glivenko-Cantelli classes. For instance, consider

F = {1[x ∈ S] : S ⊂ R, |S| < ∞} .

Then for a continuous distributionP , Pf = 0 for anyf ∈ F , but

supf∈F Pnf = 1 for all n. So althoughPnf
as
→ Pf for all f ∈ F , this

convergence is not uniform overF . F is too large.
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Glivenko-Cantelli Classes: Measurability

We need to be careful when we’re working with asupremum of an

empirical process like ‖Pn − P‖F . See Pollard for some assumptions onF

that ensure that this supremum is measurable. An alternative approach is to

work, instead of withE‖Pn − P‖F , with

sup {E‖Pn − P‖G : G ⊆ F, |G| < ∞} .

Then the max overG is measurable because it is over a finite set.
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Empirical Risk Minimization

Why study GC classes? They are important for estimators based on

empirical risk minimization.

Let’s consider a decision theoretic setting: we define a lossfunctionℓ(θ, z),

which measures how bad it is to chooseθ when the outcome isz.

Definition: ForZ ∼ P , therisk is L(θ) = Pℓ(θ, Z).

We aim to chooseθ ∈ Θ to minimize the risk.
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Empirical Risk Minimization

Examples:

1. Pattern classification:θ : X → {0, 1}, z = (x, y) ∈ X × {0, 1},

ℓ(θ, (x, y)) = 1[θ(x) 6= y]. Then we aim to chooseθ ∈ Θ to minimize

the probability of misclassification.

2. Density estimation:pθ is a density,X ∼ P , pθ∗ , ℓ(θ, z) = − log pθ(z).

Then we aim to chooseθ to minimize

E log
pθ∗(X)

pθ(X)
= DKL(pθ∗ ||pθ).

3. Regression:θ ∈ R
p, z = (x, y), ℓ(θ, (x, y)) = |θ′x − y|. Then we aim

to chooseθ to minimize expected absolute error.
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Empirical Risk Minimization

SupposeZ1, . . . , Zn are i.i.d. according toP .

Definition: Define theempirical risk as

Ln(θ) = Pnℓ(θ, Z) =
1

n

n∑

i=1

ℓ(θ, Zi).

Empirical risk minimization choosesθ to minimizeLn(θ).
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Empirical Risk Minimization

Examples:

1. Pattern classification:θ : X → {0, 1}, z = (x, y) ∈ X × {0, 1},

ℓ(θ, (x, y)) = 1[θ(x) 6= y]. Empirical risk minimization choosesθ to

minimize misclassifications on the sample.

2. Density estimation:pθ is a density,X ∼ P , pθ∗ , ℓ(θ, z) = − log pθ(z).

ERM is maximum likelihood.

3. Regression:θ ∈ R
p, z = (x, y), ℓ(θ, (x, y)) = |θ′x − y|. ERM chooses

θ to minimize the average absolute error on the sample.
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Glivenko-Cantelli Classes

Why are uniform laws of large numbers useful for empirical risk

minimization?

We are interested in controlling the excess risk,

L(θ̂) − inf
θ∈Θ

L(θ) = L(θ̂) − L(θ∗),

whereθ∗ minimizesL onΘ. We can decompose it as

L(θ̂) − L(θ∗) =
[

L(θ̂) − Ln(θ̂)
]

+
[

Ln(θ̂) − Ln(θ∗)
]

+ [Ln(θ∗) − L(θ∗)] .
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Glivenko-Cantelli Classes

One of these terms is a difference between a sample average and an

expectation for the fixed functionℓ(θ, ·):

Ln(θ∗) − L(θ∗) =
1

n

n∑

i=1

ℓ(θ∗, Zi) − Pℓ(θ∗, Z).

The law of large numbers shows that this term converges to zero; and with

information about the tails ofℓ(θ∗, Z) (such as boundedness), we can get

bounds on its value.
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Glivenko-Cantelli Classes

Ln(θ̂) − Ln(θ∗) is non-positive, becausêθ is chosen to minimizeLn.

The other difference,L(θ̂) − Ln(θ̂), is more interesting. For any fixedθ,

this difference goes to zero. Butθ̂ is random, since it is chosen using the

X1, . . . , Xn. An easy upper bound is

L(θ̂) − Ln(θ̂) ≤ sup
θ∈Θ

|L(θ) − Ln(θ)| ,

and this motivates the study of uniform laws of large numbers.
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Proof of Glivenko-Cantelli Theorem

Theorem: ‖Fn − F‖
∞

as
→ 0. That is,‖P − Pn‖G

as
→ 0, whereG =

{1[x ≤ t] : t ∈ R}.

We’ll look at a proof that we’ll then extend to a more general sufficient

condition for a class to be Glivenko-Cantelli.

The proof involves three steps: A concentration inequality, symmetrization,

which leads us to consider restrictions of step functionsg ∈ G to the data,

and then exploiting the fact that the set of these restrictions is always simple.
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Proof of Glivenko-Cantelli Theorem: Concentration

First, sinceg(Xi) ∈ {0, 1}, we have that the following function of the

random variablesX1, . . . , Xn satisfies the bounded differences property

with bound1/n:

sup
g∈G

|Pg − Png|

The bounded differences inequality implies that, with probability at least

1 − exp(−2ǫ2n),

‖P − Pn‖G ≤ E‖P − Pn‖G + ǫ.

16



Proof of Glivenko-Cantelli Theorem: Symmetrization

Second, we symmetrize by replacingPg by P ′

ng = 1

n

∑n

i=1
g(X ′

i). In

particular, we have

E‖P − Pn‖G = E sup
g∈G

∣
∣
∣
∣
∣
E

[

1

n

n∑

i=1

(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣
Xn

1

]∣
∣
∣
∣
∣

≤ EE

[

sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Xn

1

]

= E sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣
= E‖P ′

n − Pn‖G.
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Proof of Glivenko-Cantelli Theorem: Symmetrization

Now we symmetrize again: for anyǫi ∈ {±1},

E sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣
= E sup

g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫi(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣
,

This follows from the fact thatXi andX ′

i are i.i.d., and so the distribution

of the supremum is unchanged when we swap them. And so in particular

the expectation of the supremum is unchanged. And since thisis true for

anyǫi, we can take the expectation over any random choice of theǫi. We’ll

pick them independently and uniformly.
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Proof of Glivenko-Cantelli Theorem: Symmetrization

E sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫi(g(X ′

i) − g(Xi))

∣
∣
∣
∣
∣

≤ E sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫig(X ′

i)

∣
∣
∣
∣
∣
+ sup

g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫig(Xi)

∣
∣
∣
∣
∣

≤ 2E sup
g∈G

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫig(Xi)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

Rademacher complexity

= 2E‖Rn‖G,

where we’ve defined theRademacher process
Rn(g) = (1/n)

∑n

i=1
ǫig(Xi). (We’ll finish the proof next lecture...)
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