Theoretical Statistics. Lecture 8.
Peter Bartlett

1. Uniform laws of large numbers:

(a) Glivenko-Cantelli Theorem.

(b) Glivenko-Cantelli classes.




\ Glivenko-Cantelli Theorem'

First example of a uniform law of large numbers.

Theorem: ||F,, — F||__ = 0.

Here, F' is a cumulative distribution functiort;,, is the empirical
cumulative distribution function,

n
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whereX,, ..., X,, are i.i.d. with distributionf’, and
|F — Glloc = sup, |[F'(t) — G(¢)].




\ Glivenko-Cantelli Theorem.

Why uniform law of large numbers?

| Fn — Fl| o = sup [Fy(2) — F(z)]

=sup |P,(X <z)— P[X <z

as
= 07

whereP,, is the empirical distribution that assigns mags to eachX;.

The law of large numbers says that, foraJlP, (X < z) &5 P(X < z).
The GC Theorem says that this happens uniformly aver




Glivenko-Cantelli Theorem: Applications'

Why is it useful? Often, we construct estimators of varioasameters of
interestd( F') by replacingF’ with F),. These are calleplug-in estimators.
Examples:

1. 9(F) = EX,whereX ~ F.0(F)=13" X, =P, X.

2. 0(F) =inf{zx : F(x)
0(F) = inf{x : F(x)

1/2}, the median. More generally,

>
> a}, thea-quantile.

0(F) inf{m:

If 0 is continuous wrt| - ||, then we immediately gek(F) 23 0(F).




\ Glivenko-Cantell Classeﬂ

Definition: F'i1s aGlivenko-Cantelli classfor P if

P
sup |P,f — Pf|=:||P, — Pllr — 0.
fer

Here, P is a distribution onX’, X, ..., X,, are drawn i.i.d. fromP, P,, is
the empirical distribution (which assigns mass: to each ofX, ..., X,),
I Is a set of measurable real-valued functionstowith finite expectation
underP, P,, — P is anempirical process that is, a stochastic process
indexed by a class of functions, and||P,, — P||r := sup;cp |Pnf — Pf].

The GC Theorem is a special case, with= {1[x < t] : t € R} (and with
the stronger conclusion that convergence is almost suresayé¢hat such
an F'is a ‘strong GC class’).




\ Glivenko-Cantell Classeﬂ

Not all ' are Glivenko-Cantelli classes. For instance, consider

F={llz e S|:SCR, |S]| < 0}.

Then for a continuous distributioR, Pf = 0 forany f € F', but
supcp Pnf = 1forall n. So althoughP, f = Pf forall f € F, this
convergence is not uniform ovét. F'is too large.




‘GIivenko-CanteIIi Classes: Measurability'

We need to be careful when we’re working witlsugoremum of an

empirical processlike || P, — P||r. See Pollard for some assumptionsion
that ensure that this supremum is measurable. An alteenapiproach is to
work, instead of withE|| P,, — P|| ¢, with

sup{E|| P, — Pll¢: G C F, |G| < oo}

Then the max ovef? is measurable because it is over a finite set.




Empirical Risk Minimization I

Why study GC classes? They are important for estimatorscbaise
empirical risk minimization.

Let’s consider a decision theoretic setting: we define afimsstion/(6, z),
which measures how bad it is to chodgsehen the outcome is.

Definition: ForZ ~ P, therisk is L(0) = P{(0, 7).

We aim to choosé € © to minimize the risk.




Empirical Risk Minimization I

1. Pattern classificatio:: X — {0,1}, z = (z,y) € X x {0, 1},
00, (z,y)) = 1|0(x) # y]. Then we aim to choose € © to minimize
the probability of misclassification.

Examples:

2. Density estimationpy is a density X ~ P, pg=, £(0, z) = —logpg(2).
Then we aim to choosgto minimize

po~(X)

E log
po(X)

= Dxr.(po-||pe)-

3. Regressiond € R?, z = (z,y), £(0, (x,y)) = |0’z — y|. Then we aim
to choos& to minimize expected absolute error.




Empirical Risk Minimization I

Suppose/y, ..., Z, are i.i.d. according td".

Definition: Define theempirical risk as

L.(0) = P00, 2) Zeez

Empirical risk minimization choose% to minimize L, (9).
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Empirical Risk Minimization I

Examples:

1. Pattern classificatio:: X — {0,1}, z = (z,y) € X x {0, 1},

000, (x,y)) = 1[8(x) # y]. Empirical risk minimization choosesto
minimize misclassifications on the sample.

2. Density estimationpy is a density X ~ P, pg=, £(0,z) = —logpg(2).
ERM is maximum likelinhood.

3. Regressiond € R?, z = (z,y), £(0, (z,y)) = |0’z — y|. ERM chooses
6 to minimize the average absolute error on the sample.
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\ Glivenko-Cantell Classes

Why are uniform laws of large numbers useful for empiricakri
minimization?

We are interested in controlling the excess risk,

L(6) - inf L(9) = L(6) — L(6"),

wheref* minimizesL on®. We can decompose it as

L(O) = L(0") = [L(B) = La(B)| + [Ln(8) — La(6)] + [La(67) — L(6)]
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\ Glivenko-Cantell Classes

One of these terms is a difference between a sample averdgaman
expectation for the fixed functiof(6, -):

L, (0%) — — Zz (0%, Z;) — PL0*, Z).

The law of large numbers shows that this term converges tm aed with
iInformation about the tails of(#*, Z) (such as boundedness), we can get
bounds on its value.
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\ Glivenko-Cantell Classeﬂ

L.(0) — L, (6*) is non-positive, becaugkis chosen to minimizé.,,.

The other differencel.(d) — L,,(0), is more interesting. For any fixey
this difference goes to zero. Béiis random, since it is chosen using the
Xi,...,X,,. An easy upper bound is

L() — L (0) < sup |L(0) — L, (0)],
0cO

and this motivates the study of uniform laws of large numbers
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Proof of Glivenko-Cantell Theorem.

Theorem: ||F, — F||., = 0. Thatis,||P — P,||lc = 0, whereG =
{1z <t]: t € R}.

We’'ll look at a proof that we’ll then extend to a more generdfisient
condition for a class to be Glivenko-Cantelli.

The proof involves three steps: A concentration inequasgynmetrization,
which leads us to consider restrictions of step functigsG to the data,
and then exploiting the fact that the set of these restnetie always simple.
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\ Proof of Glivenko-Cantelli Theorem: Concentration'

First, sinceg(X;) € {0, 1}, we have that the following function of the
random variables(, ..., X,, satisfies the bounded differences property
with bound1/n:

sup |Pg — P,g|
geG

The bounded differences inequality implies that, with @obty at least
1 — exp(—2¢2n),

|P— Pullg < E|IP - Pl +e
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Proof of Glivenko-Cantelli Theorem: Symmetrization'

Second, we symmetrize by replacify by P,g = = > | g(X/). In
particular, we have

E||P — P,[c = Esup |E | -

geG

< EE | sup |—
geG | M

= Esup
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Proof of Glivenko-Cantelli Theorem: Symmetrization'

Now we symmetrize again: for any € {+1},

n

1

E sup |— ‘)—g(Xz'))| = Esup —Zei(g(X,f)—g(Xi)) ;

geG | M~

1=1

This follows from the fact thak’; and X are i.i.d., and so the distribution
of the supremum is unchanged when we swap them. And so ircyiarti
the expectation of the supremum is unchanged. And sincestinge for
anye;, we can take the expectation over any random choice of;thé&e’ll
pick them independently and uniformly.

18



Proof of Glivenko-Cantelli Theorem: Symmetrization'

n

L ZQQ(Xv;)

n
9€G |7 =1

1
<2Esup |— €;.9(X;)| = 2E||R,||q,

\ - 7
"

Rademacher complexity

where we've defined thRademacher process
Rn(9) = (1/n) > 1 €:g(X;). (We'll finish the proof next lecture...)
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