
Theoretical Statistics. Lecture 27.
Peter Bartlett

1. Nonparametric regression.

2. Bootstrap estimators. [vdV23]
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Nonparametric regression

Suppose we observe(X1, Y1), . . . , (Xn, Yn) ∼ P i.i.d., and we aim to

choosef̂n : X → R from a classF of functions, so that

Pℓ(Y, f̂n(X)) − inf
f∈F

Pℓ(Y, f(X))

is small; here,ℓ is a loss function.

e.g.,ℓ(y, ŷ) = (y − ŷ)2, f̂n = least squares estimate.
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Nonparametric regression: Examples

Linear regression:
F = {x 7→ βT x : β ∈ Θ} for Θ ⊆ R

k convex.

Reproducing kernel Hilbert space:
F = {f ∈ span{k(x, ·)}, ‖f‖H ≤ B}, wherek is a reproducing kernel

(positive definite, symmetric).

(e.g., Splines,F =
{
x 7→ f(x) :

∫
(f ′′(x))2 dx ≤ B

}
.

Radial basis functions,k(x, y) = exp(−(x − y)T S(x − y)/2).)

Monotone regression:F = {f monotone}.

Convex regression:F = {f convex}.

In all of these examples, estimation with convexℓ is finite-dimensional

convex optimization.
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Nonparametric regression and local complexity

Define

G = {(x, y) 7→ ℓ(y, f(x)) : f ∈ F},

f̂n = empirical risk minimizer,

ĝn = ℓ(y, f̂n(x)),

f∗ = risk minimizer,

g∗ = ℓ(y, f∗(x))

We’ve seen that we can use a uniform law of large numbers to bound the

excess risk:

P ĝn − Pg∗ ≤ 2‖P − Pn‖G.
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Nonparametric regression

It turns out we can sometimes get better rates by consideringa local

version: Define

G(r) = {g ∈ G : Pg − Pg∗ ≤ r}.

Thenĝn ∈ G(r) implies ĝn ∈ G(r′) for r′ = 2‖P − Pn‖G(r).

This leads to an improvement, for example, when functions inG(r) are

bounded and have variance decreasing withr (e.g., if

supg,g′∈G(r) P (g − g′)2 decreases withr), because in those cases, we can

use Bernstein’s inequality (see Lecture 3), or a functionalversion

(Talagrand’s inequality).
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Nonparametric regression

We can iterate the argument to show that

P ĝn − Pg∗ ≤ r∗,

wherer∗ is the fixed point ofr = 2‖P − Pn‖G(r).

(And we can replace‖P − Pn‖G(r) throughout by an upper bound, such as

the Rademacher complexity, or the entropy integral.)

In many cases, these local Rademacher averages provide optimal bounds on

the expected excess risk of empirical risk minimizers.
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Nonparametric regression

One crucial condition is that as the expected excess risk,P (g − g∗) gets
small, the variance also gets small. For instance, we can usea condition like

P (g − g∗)2 ≤ cP (g − g∗).

Such a condition is satisfied, for example, by quadratic losswith a convex
F , because this loss has large modulus of convexity:

δℓ(ǫ) = inf

{
ℓ(a) + ℓ(b)

2
− ℓ

(
a + b

2

)

: |a − b| ≥ ǫ

}

≥ ǫ2

4
,

which implies the risk functionalR(f) = Pℓf has large modulus of
convexity:

δR(ǫ) = inf

{
R(f) + R(g)

2
− R

(
f + g

2

)

:
√

P (f − g)2 ≥ ǫ

}

≥ ǫ2

4
.
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Nonparametric regression

This is equivalent to

δR

(√

P (f − g)2
)

≤ R(f) + R(g)

2
− R

(
f + g

2

)

⇒ P (f − g)2 ≤ 4

(
R(f) + R(g)

2
− R

(
f + g

2

))

.
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Nonparametric regression

Hence

P (g − g∗)2 = P
(

(ℓ(f, Y ) − ℓ(f∗, Y ))
2
)

≤ L2P |f − f∗|2 (Lipschitz)

≤ 4L2

(
R(f) + R(f∗)

2
− R

(
f + f∗

2

))

(convexity ofℓ)

≤ 4L2

(
R(f) + R(f∗)

2
− R(f∗)

)

(convexity ofF )

= 4L2 R(f) − R(f∗)

2
.
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Nonparametric regression

For example, for the following examples, we can calculate the entropy

integral (which is an upper bound on the Rademacher averages) and

calculate the fixed point.

For ℓ = quadratic loss andF = the set of 1-Lipschitz functions from[0, 1]

to [0, 1] has fixed point that scales asn−2/3 (whereas the uniform law scales

asn−1/2).

For ℓ = quadratic loss andF = the set of 1-Lipschitz convex functions

from [0, 1] to [0, 1] has fixed point that scales asn−4/5.

(It turns out that both rates are minimax optimal. Notice that convexity

improves the rate...)
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Bootstrap estimation

We have dataX ∼ P , and an estimatêθ of a parameterθ. We’d like to

construct a confidence interval.

P
(

θ̂ − κασ̂ ≤ θ ≤ θ̂ + κ1−ασ̂
)

≥ 1 − 2α,

whereκα, κ1−α are the corresponding quantiles of(θ̂ − θ)/σ̂.

Problem:

The distribution of(θ̂ − θ)/σ̂ depends onP .

If we know the asymptotics (e.g., asymptotically normal), we can use that.

What if we want more accurate quantiles for fixedn? Bootstrap.
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Bootstrap: definition

EstimateP usingP̂ .

UnderP |θ: UnderP̂ |θ̂:

θ̂ θ̂∗

σ̂ σ̂∗

θ̂ − θ

σ̂

θ̂∗ − θ̂

σ̂∗

︸ ︷︷ ︸

and the quantiles of(θ̂∗ − θ̂)/σ̂∗ are used to define thebootstrap
confidence intervalaroundθ̂.
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Bootstrap: definition

For example, ifκα is the appropriate upperα quantile of(θ̂∗ − θ̂)/σ̂∗ under

the bootstrap distribution, we set

κα = arg min
x

{

P̂

(

θ̂∗ − θ̂

σ̂∗
≤ x

∣
∣
∣
∣
∣
θ̂

)

≥ 1 − α

}

,

and then assume

P

(

θ̂ − θ

σ̂
≤ κα

)

≈ 1 − α.

If P̂ approximatesP , this is a good approximation.
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Bootstrap: definition

How do we estimatêP?

Empirical bootstrap: P̂ = P n
n ,

Pn =
1

n

∑

i

δXi
.

Parametric bootstrap: P̂ = P n
θ̂

.

We useP̂ to generate many (saym) bootstrap samples, each of the form
(X∗

1 , . . . , X∗

n), each gives a single(θ̂∗, σ̂∗) pair, and the empirical quantiles
of (θ̂∗ − θ̂)/σ̂∗ are calculated. The numberm affects the accuracy, but it
can be made as large as desired, so we consider the ‘population case’, that
is, the distribution of(θ̂∗ − θ̂)/σ̂∗ underP̂ .
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Bootstrap: consistency

We want the bootstrap-estimated confidence intervals to be accurate as
n → ∞:

sup
x

∣
∣
∣
∣
∣
P

(

θ̂n − θ

σ̂n
≤ x

)

− P̂n

(

θ̂∗n − θ̂

σ̂∗
n

≤ x

)∣
∣
∣
∣
∣

P→ 0.

Under the assumption that

P

(

θ̂n − θ

σ̂n
≤ x

)

→ F (x),

whereF is continuous, it suffices if, for eachx,

P̂n

(

θ̂∗n − θ̂

σ̂∗
n

≤ x

)

P→ F (x).
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Bootstrap: consistency

For example, we might haveF normal, and then it suffices to show that the

bootstrap statistic converges weakly to a normal.

The1/σ̂∗

n factor is easy to dispense with, so we can consider just the

asymptotics of
√

n
(

θ̂∗n − θ̂n

)

.

Theorem: If X1, X2, . . . are i.i.d. with meanµ and covarianceΣ, almost

surely on the sequence, the conditional distribution of thebootstrap esti-

mate of the mean satisfies

√
n
(
X̄∗

n − X̄n

)
 N(0, Σ).
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Bootstrap

Theorem: If

1. θ̂n
as→ θ,

2.
√

n(θ̂n − θ) T ,

3. Conditionally almost surely,
√

n(θ̂∗n − θ̂n) T ,

4. φ is continuously differentiable nearθ,

then conditionally almost surely,

√
n
(

φ
(

θ̂∗n

)

− φ
(

θ̂n

))

 φ′

θ(T ).

(And, of course,
√

n
(

φ
(

θ̂n

)

− φ(θ)
)

 φ′

θ(T ).)
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Bootstrap

So we can go from consistency of the bootstrap in estimating the (normal)

distribution ofθ̂n − θ to consistency in estimating the distribution of a

smooth function ofθ. For instance, we can prove consistency of the

bootstrap for estimating the distribution of a variance estimate. And we can

show that a bootstrap empirical process converges to the same weak limit as

the usual empirical process (a Brownian bridge), and exploit the functional

delta method to show that suitable functions of the bootstrap empirical

distribution function (for example, sample quantiles) have the same weak

limit as that of the corresponding functions of the usual empirical

distribution function.
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Bootstrap

Notice that these results have the flavor of a sanity check: they show only

that, if we have normal asymptotics, then the bootstrap willasymptotically

also have normal asymptotics. But we could have used a confidence interval

based on the normal asymptotics! We might expect the bootstrap estimates

to be an improvement on the asymptotics. But to demonstrate an

improvement, we need a more refined result.
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Bootstrap

One approach is based on an Edgeworth expansion, which is a refined

version of the central limit theorem:

P n

(√
n

X̄n − µ

σ̂n
≤ x

)

= Φ(x)

+ φ(x)

(
p1(x; µ3)√

n
+

p2(x; µ3, µ4)

n
+ O

(
1

n3/2

))

,

where theµi are the moments ofP . By showing that the bootstrap matches

the correct distribution to higher order than1/
√

n, we can demonstrate an

improvement over the normal approximation.
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Final Exam

• Thursday, May 16, 8am-11am, Evans 334.

• Open book: Bring any material you like.

• Grade is total of bestn − 1 of n questions.
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