Theoretical Statistics. L ecture 26.
Peter Bartlett

1. Likelihood ratio tests [vdv15].

(a) Taylor series.

0Oy
(b) Ay~ X%_l-

(c) Asymptotic power function.




\Recall: Likelihood ratiotests'

Suppose we obsenk, ..., X,,, with densitypy,
Hy:0 € OgversusH; : 0 € ©;.
NB: composite hypotheses.

Define

SUPpco,u0; H?:1 po(X;)
SUPgco, H?:1 po(X5)

— Qi (eén (X;) — gén’O(X’i)) :

A, = 2log

whereén IS the maximum likelihood estimator férover® = 6, U ©4,
and®,, ; is the maximum likelihood estimator ovex,.




\Likelihood ratiotests.

Notice that, for a sufficient statisti€, py () depends or: only through
T(x):

po(x) = h(z)fo(T(x)),

su 11
A, = 2log Poco, 11

SuPQE@O 11

SUPgco, 11
SUPgco, 11

= 2log

henceA,, depends only on eninimal sufficient statistic.




\Likelihood ratiotests'

We'll focus on cases wheil@ = O, U O is a subset oR*, and whered
and®, are locally linear spaces. Then undég, we'll see thatA,, is

asymptotically chi-square distributed withh degrees of freedom, where
m = dim(©) — dim(60g). So we can get a test that is asymptotically of

level o by comparing),, to the uppekr-quantile of a chi-square
distribution.




‘Likelihood ratiotests: Taylor series'

Under Py, wheref € Oy is in the interior ofo,

Ap = 223 (6, (X:) 5, (X))

= 23" (64, (%) ~ 45, (X0)

— _9 (én,o _ én)T één (X;) — (én,g _

1=1
N S

Ve

whered,, is betweerd,, andd,, o, and we have assumed that, fora|l
0 — fy(x) Is twice continuously differentiable.




‘Likelihood ratiotests: Taylor series'

—vn (én,O - én>T % iéén (Xi)vn (én,O - én) +op, (1),
i=1

becausd,, maximizesP, ¢y, and asymptotically this is in the interior 6f,
soP,l; =0.

A

A, = /n (én,o _ en>T1Nﬁ (én,o _ én) +op, (1),

A

where we have assumed that the sequehﬁe(én,g — Hn) IS uniformly
tight, and that

1 o ..
=D 45, (Xi) = —Ip +op,(1).
1=1




‘Likelihood ratiotests: Taylor series'

(Here,d € O, that is, under the null, so we hagg i 6.)

Thus,

A

Ao = Vi (o = 6.) o/t (B —02) + op, (1)

IS a quadratic form defining a squared distance betv@ggrandén.




Likelihood ratio tests. Simple null I

Suppos®, = {6y} andfd = 6.

A, = /i (én - 90>T19\/ﬁ (én - 90) +op, (1).

Under general conditions (we saw them for maximum likelthoo
estimators),

Vi (0 = 05) ~ X,
whereX ~ N (0,1, '), so

Ay~ XTIgX = 271 P10 27 = 27 7,

whereZ = I,/>X ~ N(0, I,). Thus,A,, ~ x2.




\Recall: Maximum Iikelihood'

Theorem: Suppose

1. (P : 0 € ©)is QMD atf with nonsingular Fisher informatiofy,

2. for everyzx, 0 — log py(x) is Lipschitz, and
3. the maximum likelihood estimaté, is consistent.
Then

Vb, —6) % N(0,I;1).




Likelihood ratio tests. Composite null I

What if © is a linear subspace (of dimension more than 0)?

We might expect/n(6,,.o — 0,6, — ) to converge jointly to a normal

vector(Xg, X ), in which case
Ay~ (X — Xo) T Ty(X — Xo).

We'll see that this has g; _, distribution, wherg: = dim(©) and
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Likelihood ratio tests. Composite null I

Write A,, In terms of local likelihood ratios, for the truiein ©g:

A, = 2log SPocO [Tiz1 po(X)
SUPgco, H?:1 po(X;)

[Tie1 Pon) ym(Xs)

= 2 sup log

heH, H?:1 po(X;)
[Li1 Potn) ym(Xi)

— 2 sup log

he€H,, o H?:l pQ(Xi)

where H, =+/n(© —10),
H,o0=+vn(0y—0)

are thelocal parameter spaces.

11
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Likelihood ratio tests. Composite null I

Theorem: Suppose (1) Py : 6 € ©) is QMD atf € ©q with Iy non-
singular, (2) for a functiorf with Py¢? < oo, for everyé,, 6, in a neigh-
borhood off,

log po, () — log po, ()| < £(x) |61 — b,

(3) the estimatorg,, ; andd,, are consistent undé?;, and (4) the set#l,,
andH,, converge to setél, andH. Then

A, LV

2 2
L2X 1P| || x - |

whereX ~ N(h, I, ).
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Likelihood ratio tests. Composite null I

Here, we say that a sequendg of sets converges to a shtif

H = { lim A, : h,, convergenth, € Hn} .

71— 00

Also, we write

2 2
|12 X — 1, Ho | ~ inf 12X - 1|
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Likelihood ratio tests. Composite null I

| dea of Proof:
A,, 1s the difference of two rescaled maximum likelihood ratrogesses,

i (X, n (X,
2 sup log Hz_lfﬂh/\/_( ) —2 sup log Hz_lfﬂh/\/_( )
heH,, Hz’:l pQ(Xz') heH,, o Hz‘:l pQ(Xi)

Just as we saw for maximum likelihood, this statistic for [zl
experiment converges to the corresponding asymptotisttan the
normal experiment,

dN(h, I, ") dN(h, I, ")

2 sup lo X)—2 sup lo
Suplog N, 7.1y ) T2 Sl log

(X).

whereX ~ N (0,1, ). (And underd + g/+/n, A,, converges in distribution
to the same thing, with ~ N (g, I; ").)
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Likelihood ratio tests. Composite null I

dN(h,I;" dN(h,I;"
2 sup log (7 9_1)(X) — 2 sup log (7 9_1)(X)
e dN(0,1, ") heH,  dN(0,I,")

= sup —(X — W) Iy(X —h) — sup —(X —h) ' Iy(X — h)
he H heHy

But this Is

e . T . o . T .
—hlenlgo(X h)" Ig(X — h) hlglf;[(X h)" Ig(X — h)

. 1/2 B . H 1/2 B H2
g [ o= w1 x —

2 2
=||5 2 x = 12| - |1 x - 1 H |
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Likelihood ratio tests. Composite null I

Theorem: |If 6 € O Is an interior point of®, then H,, converges t(
H = RF, and

2
|n°x - 5%m| =o.

If, in addition, H is a linear subspace of dimensihrthen

2
2 1272 8~

whereX ~ N(0,1, ).
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Likelihood ratio tests. Composite null I
Proof:

Write Z = I,/>X ~ N(0,I},). Write Z = (Z1, ..., Z;) in a basis where
the firstl basis vectors lie itH,. (And notice that, in this basis, it is still a
standard normal.) Then the squared distance f¥oto H is

k
2
|2 = Holl = >, 27 ~xi .
i=l+1
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Likelihood ratio tests: Examples'
Example;

Supposé = (u,0) € R x RT and

wheref is a fixed density orR.
ConsiderH, : = 0 versusH; : u # 0. Fix0 = (0, 0).
60 — {O} X (07 OO),
H,o=+v/n(0g—10)={0} x (—v/no,o0) = {0} x R = Hy.

Sodim(Hy) = 1, dim(H) = 2. For suitably regulay, the likelihood ratio
statistic is asymptotically?. [PICTURE]
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Likelihood ratio tests: Examples'

ConsiderHy : i < 0versusH; : > 0. Fix0 = (u, o) with p < 0.

@0 = (—O0,0] X <0, OO),
Hn,OI\/ﬁ(@O—H)—)RXR:Ho.

Sodim(Hy) = 2 = dim(H). For suitably regulayf, the likelihood ratio
statistic is asymptoticallg.
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Likelihood ratio tests: Examples'

ConsiderHy : u < 0versusH; : u > 0. Fix0 = (0, 0).

Ay = (—o0, 0] % (0, 50),
Hn,O = \/ﬁ(@g — !9) — (—O0,0] X R = H().

The weak limit is

2
HZ _ zg/QHOH |

Notice thatlemHo IS a half-space. [PICTURE] So this asymptotic

distribution is the distribution ofZ; v 0)?, whereZ; ~ N(0,1). Because
Pr((Z; Vv 0)? > ¢) = (1/2) Pr(Z? > ¢), we can set the critical value as the
upper2a-quantile of ay4 variable.
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Likelihood ratio tests: Asymptotic power function I

If 6 € ©¢ IS an interior point o®, we have seen that

2

A 71 A

whereX ~ N(h, I, ).
If Hy Is a linear subspace of dimensigrinen under the null{ = 0), this is

Xk—1-
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Likelihood ratio tests: Asymptotic power function I

Setting the critical valug;,_; ., we have

h
T (9 _|_ %> — PQ—I—h/\/ﬁ (An > X%—l,&)

1/2 1/2 2
— PN(h,Igl) (HIH/ X = Ie/ HOH > Xi—l,oz

1/2 2 2
= Pn(o,n) HX — Iy " (=h+ HO)H > Xk—1,a

=P (xi_z (Hfém(h — Ho)H) > xi_z,a) :

wherey? ,(d) is a random variable with a noncentral chi-squared
distribution with noncentrality parametér..
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Likelihood ratio tests: Asymptotic power function I

Thatis,x; _;(d) has the distribution of the squared distance between a
standard normal ifR* and an affine subspace of dimensidhat is distance

o from the origin.

P (Xi—z <||191/2(h — Hy) ) > X%—La)

IS an increasing function #Ig/Q(h — Hy)||, and hence ofh||.
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Likelihood ratio tests: Asymptotic power function I

First, think of Hy = {0}:

ng/Q(h _ HO)H — /T Ih.

Decomposingy into outer products of its eigenvectors, we have

k
W' Igh =)~ Xi(el h)*.

1=1

So we get highest power in the directions that align with evgetorse; that
have largest eigenvalues. If the log likelihood is twice differentiable,
these are the directions with a large second derivativevdhance of the
score function is large in these directions.

And if H, is a subspace, replaéehere with the difference betweénand
Its projection onH, which is in the space orthogonal if,.
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