
Theoretical Statistics. Lecture 25.
Peter Bartlett

1. Relative efficiency of tests [vdv14]: Rescaling rates.

2. Likelihood ratio tests [vdv15].
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Recall: Relative efficiency of tests

Theorem: Suppose that (1)Tn, µ, andσ are such that, for allh and

θn = θ0 + h/
√
n,

√
n (Tn − µ(θn))

σ(θn)

θn
 N(0, 1),

(2) µ is differentiable at0, (3)σ is continuous at0.

Then a test that rejectsH0 : θ = θ0 for large values ofTn and is asymptot-

ically of levelα satisfies, for allh,

πn (θn) → 1− Φ

(

zα − h
µ′(θ0)

σ(θ0)

)

.

So the slopeµ′(θ0)/σ(θ0) determines the asymptotic power.
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Rescaling rates

So far, we’ve considered alternatives of the form

θn = θ0 +
h√
n
.

This corresponds to choosing a sequenceθn such that the difference,

θn − θ0, when appropriately rescaled, approaches a constant:

√
n(θn − θ0) → h.

This rescaling rate is appropriate for regular cases. But other rates are

possible.
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Rescaling rates:L1-distance

Definition: TheL1-distance [not total variation] between two distributions

P andQ with densitiesp = dP/dµ andq = dQ/dµ is

‖P −Q‖ =

∫

|p− q| dµ.

Lemma: For a sequence of modelsPn,θ with null hypothesisH0 : θ = θ0

and alternativesH1 : θ = θn, the power function of any test satisfies

πn(θn)− πn(θ0) ≤
1

2
‖Pn,θn − Pn,θ0‖ .

Furthermore, there is a test for which equality holds.
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Rescaling rates:L1-distance

Consequences:

1. If ‖Pn,θn − Pn,θ0‖ → 2: Some sequence of tests is perfect, that is,

πn(θn) → 1 andπn(θ0) → 0.

2. If ‖Pn,θn − Pn,θ0‖ → 0: Any sequence of tests is worthless, because

πn(θn)− πn(θ0) → 0.

3. If ‖Pn,θn − Pn,θ0‖ is bounded away from0 and2: There is no perfect

sequence of tests, but not all tests are worthless.

This result reveals the appropriate rescaling rate: we needθn to approachθ0
at a rate than ensures an intermediate value of‖Pn,θn − Pn,θ0‖.
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Rescaling rates:L1-distance

Proof: First, for any densitiesp andq,

0 =

∫

(p− q) dµ

=

∫

p>q

(p− q) dµ+

∫

p<q

(p− q) dµ

=

∫

p>q

|p− q| dµ−
∫

p<q

|p− q| dµ,

so [notice relationship with total variation distance]
∫

|p− q| dµ =

∫

p>q

|p− q| dµ+

∫

p<q

|p− q| dµ

= 2

∫

p>q

|p− q| dµ.
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Rescaling rates:L1-distance

So we have

πn(θn)− πn(θ0) =

∫

1[Tn ∈ Kn](pn,θn − pn,θ0) dµn

≤
∫

1[pn,θn > pn,θ0 ](pn,θn − pn,θ0) dµn

=

∫

1[pn,θn > pn,θ0 ]|pn,θn − pn,θ0 | dµn

=
1

2
‖Pn,θn − Pn,θ0‖ ,

where the upper bound is achieved by the test

1[Tn ∈ Kn] = 1[pn,θn > pn,θ0 ].
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Rescaling rates: Hellinger distance

It’s convenient to relate theL1-distance to Hellinger distance (because then

product measures are easy to deal with).

Definition: TheHellinger distancebetweenP andQ (which have densities

p andq) is

h(P,Q) =

(

1

2

∫

(

p1/2 − q1/2
)2

dµ

)1/2

.

(The1/2 ensures0 ≤ h(P,Q) ≤ 1. It is defined without it in vdV.)
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Rescaling rates: Hellinger distance

Theorem:

nh2(Pθn , Pθ0) → ∞ ⇒ ‖Pn
θn − Pn

θ0‖ → 2,

nh2(Pθn , Pθ0) → 0 ⇒ ‖Pn
θn − Pn

θ0‖ → 0,

h2(Pθn , Pθ0) = Θ

(

1

n

)

⇒ ‖Pn
θn − Pn

θ0‖ 6→ {0, 2}.
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Rescaling rates: Hellinger distance

Proof:
Useful properties:

2h2(P,Q) ≤ ‖P −Q‖ ≤ 2
√
2h(P,Q).

Also, A(Pn, Qn) = An(P,Q),

Where

A(P,Q) = 1− h2(p, q) =

∫

p1/2q1/2 dµ

is theHellinger affinity .
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Rescaling rates: Hellinger distance

Proof (continued):

nh2(Pθn , Pθ0) → ∞

⇒ A(Pθn , Pθ0) = 1− ω

(

1

n

)

⇒ A(Pn
θn , P

n
θ0) → 0

⇒ h2(Pn
θn , P

n
θ0) → 1

⇒ ‖Pn
θn − Pn

θ0‖ → 2.
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Rescaling rates: Hellinger distance

Proof (continued):

nh2(Pθn , Pθ0) → 0

⇒ A(Pθn , Pθ0) = 1− o

(

1

n

)

⇒ A(Pn
θn , P

n
θ0) → 1

⇒ h2(Pn
θn , P

n
θ0) → 0

⇒ ‖Pn
θn − Pn

θ0‖ → 0.
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Rescaling rates: Hellinger distance

Thus, ifh2(Pθ, Pθ0) = Θ(|θ− θ0|α), then the critical quantity is the limit of

nh2(Pθn , Pθ0) = Θ
((

n1/α|θn − θ0|
)α)

.

If Pθ is QMD atθ0, then

h2(Pθ, Pθ0) = Θ(|θ − θ0|2),

that is,α = 2, so we consider a shrinking alternative with√
n(θn − θ0) → h.
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Rescaling rates: Hellinger distance

Definition: The root densityθ 7→ √
pθ (for θ ∈ R

k) is differentiable
in quadratic mean at θ if there exists a vector-valued measurable function

ℓ̇θ : X → R
k such that, forh → 0,
∫

(

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)2

dµ = o(‖h‖2).

Theorem: If Pθ is QMD atθ andIθ = Pθ ℓ̇θ ℓ̇
T
θ exists, then

h2(Pθ+h, Pθ) =
1

8
hT Iθh+ o(‖h‖2).
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Rescaling rates: Hellinger distance

Proof:

2h2(Pθ+h, Pθ) =

∫

(√
pθ+h −√

pθ
)2

dµ

=
∥

∥

√
pθ+h −√

pθ
∥

∥

2

L2(µ)
.

But QMD implies
∥

∥

∥

∥

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

∥

∥

∥

∥

2

L2(µ)

= o(‖h‖2),

and

∥

∥

∥

∥

1

2
hT ℓ̇θ

√
pθ

∥

∥

∥

∥

2

L2(µ)

=
1

4
hTPθ

(

ℓ̇θ ℓ̇
T
θ

)

h

=
1

4
hT Iθh = O(‖h‖2).
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Rescaling rates: Hellinger distance

So

2h2(Pθ+h, Pθ) =
∥

∥

√
pθ+h −√

pθ
∥

∥

2

L2(µ)

=

∥

∥

∥

∥

1

2
hT ℓ̇θ

√
pθ +

(

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)
∥

∥

∥

∥

2

L2(µ)

=
1

4
hT Iθh+ o

(

‖h‖2
)

+
(

o(‖h‖2)O(‖h‖2)
)1/2

(Cauchy-Schwarz)

=
1

4
hT Iθh+ o

(

‖h‖2
)

.
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Rescaling rates: Hellinger distance

ConsiderPθ uniform on[0, θ]. Recall that this model is not QMD. A

straightforward calculation shows that

h2(Pθ, Pθ0) =
|θ − θ0|
θ ∨ θ0

.

So the appropriate shrinking alternative hasn(θn − θ0) → h.
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Likelihood ratio tests

Suppose we observeX1, . . . , Xn, with densitypθ,

H0 : θ ∈ Θ0 versusH1 : θ ∈ Θ1.

ForΘ0 = {θ0} andΘ1 = {θ1}, the optimal test statistic is

log
n
∏

i=1

pθ1(Xi)

pθ0(Xi)
.

If we have composite hypotheses, we could instead use

Λ̃n = log
supθ∈Θ1

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

.
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Likelihood ratio tests

Notice that, for a minimal sufficient statisticT , we can write

Λ̃n = log
supθ∈Θ1

∏n
i=1 h(Xi)fθ(T (Xi))

supθ∈Θ0

∏n
i=1 h(Xi)fθ(T (Xi))

= log
supθ∈Θ1

∏n
i=1 fθ(T (Xi))

supθ∈Θ0

∏n
i=1 fθ(T (Xi))

,

soΛ̃n depends only on the minimal sufficient statistic.

Since the critical value will be positive, it will not changethe test if we

replace this statistic bỹΛn ∨ 0. We will also scale it by a factor of 2. (We’ll

see that this gives a neater test.)

19



Likelihood ratio tests

Define

Λn = 2(Λ̃n ∨ 0)

= 2 log

(

supθ∈Θ1

∏n
i=1 pθ(Xi)

)

∨
(

supθ∈Θ0

∏n
i=1 pθ(Xi)

)

supθ∈Θ0

∏n
i=1 pθ(Xi)

= 2 log
supθ∈Θ0∪Θ1

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

= 2
n
∑

i=1

(

ℓθ̂n(Xi)− ℓθ̂n,0
(Xi)

)

,

whereθ̂n is the maximum likelihood estimator forθ overΘ = Θ0 ∪Θ1,

andθ̂n,0 is the maximum likelihood estimator overΘ0.
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Likelihood ratio tests

We’ll focus on cases whereΘ = Θ0 ∪Θ1 is a subset ofRk, and whereΘ

andΘ0 are locally linear spaces. Then underH0, we’ll see thatΛn is

asymptotically chi-square distributed withm degrees of freedom, where

m = dim(Θ)− dim(Θ0). So we can get a test that is asymptotically of

levelα by comparingΛn to the upperα-quantile of a chi-square

distribution.
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