Peter Bartlett

1. Relative efficiency of tests [vdv14]: Rescaling rates.
2. Likelihood ratio tests [vdv15].
Recall: Relative efficiency of tests

Theorem: Suppose that (1) T_n, μ, and σ are such that, for all h and $\theta_n = \theta_0 + h/\sqrt{n}$,

$$\frac{\sqrt{n}(T_n - \mu(\theta_n))}{\sigma(\theta_n)} \xrightarrow{\theta_n} N(0, 1),$$

(2) μ is differentiable at 0, (3) σ is continuous at 0.
Then a test that rejects $H_0 : \theta = \theta_0$ for large values of T_n and is asymptotically of level α satisfies, for all h,

$$\pi_n(\theta_n) \rightarrow 1 - \Phi\left(z_\alpha - h\frac{\mu'(\theta_0)}{\sigma(\theta_0)}\right).$$

So the slope $\mu'(\theta_0)/\sigma(\theta_0)$ determines the asymptotic power.
Rescaling rates

So far, we’ve considered alternatives of the form

\[\theta_n = \theta_0 + \frac{h}{\sqrt{n}}. \]

This corresponds to choosing a sequence \(\theta_n \) such that the difference, \(\theta_n - \theta_0 \), when appropriately rescaled, approaches a constant:

\[\sqrt{n}(\theta_n - \theta_0) \to h. \]

This rescaling rate is appropriate for regular cases. But other rates are possible.
Rescaling rates: \(L_1 \)-distance

Definition: The \(L_1 \)-distance [not total variation] between two distributions \(P \) and \(Q \) with densities \(p = dP/d\mu \) and \(q = dQ/d\mu \) is

\[
\|P - Q\| = \int |p - q| \, d\mu.
\]

Lemma: For a sequence of models \(P_{n,\theta} \) with null hypothesis \(H_0 : \theta = \theta_0 \) and alternatives \(H_1 : \theta = \theta_n \), the power function of any test satisfies

\[
\pi_n(\theta_n) - \pi_n(\theta_0) \leq \frac{1}{2} \|P_{n,\theta_n} - P_{n,\theta_0}\|.
\]

Furthermore, there is a test for which equality holds.
Consequences:

1. If $\|P_{n,\theta_n} - P_{n,\theta_0}\| \to 2$: Some sequence of tests is perfect, that is, $\pi_n(\theta_n) \to 1$ and $\pi_n(\theta_0) \to 0$.

2. If $\|P_{n,\theta_n} - P_{n,\theta_0}\| \to 0$: Any sequence of tests is worthless, because $\pi_n(\theta_n) - \pi_n(\theta_0) \to 0$.

3. If $\|P_{n,\theta_n} - P_{n,\theta_0}\|$ is bounded away from 0 and 2: There is no perfect sequence of tests, but not all tests are worthless.

This result reveals the appropriate rescaling rate: we need θ_n to approach θ_0 at a rate than ensures an intermediate value of $\|P_{n,\theta_n} - P_{n,\theta_0}\|$.
Rescaling rates: L_1-distance

Proof: First, for any densities p and q,

$$0 = \int (p - q) \, d\mu$$

$$= \int_{p > q} (p - q) \, d\mu + \int_{p < q} (p - q) \, d\mu$$

$$= \int_{p > q} |p - q| \, d\mu - \int_{p < q} |p - q| \, d\mu,$$

so [notice relationship with total variation distance]

$$\int |p - q| \, d\mu = \int_{p > q} |p - q| \, d\mu + \int_{p < q} |p - q| \, d\mu$$

$$= 2 \int_{p > q} |p - q| \, d\mu.$$
Rescaling rates: L_1-distance

So we have

$$\pi_n(\theta_n) - \pi_n(\theta_0) = \int 1[T_n \in K_n](p_{n,\theta_n} - p_{n,\theta_0}) \, d\mu_n$$

$$\leq \int 1[p_{n,\theta_n} > p_{n,\theta_0}](p_{n,\theta_n} - p_{n,\theta_0}) \, d\mu_n$$

$$= \int 1[p_{n,\theta_n} > p_{n,\theta_0}]|p_{n,\theta_n} - p_{n,\theta_0}| \, d\mu_n$$

$$= \frac{1}{2} \|P_{n,\theta_n} - P_{n,\theta_0}\|,$$

where the upper bound is achieved by the test

$$1[T_n \in K_n] = 1[p_{n,\theta_n} > p_{n,\theta_0}].$$
Rescaling rates: Hellinger distance

It’s convenient to relate the L_1-distance to Hellinger distance (because then product measures are easy to deal with).

Definition: The Hellinger distance between P and Q (which have densities p and q) is

$$h(P, Q) = \left(\frac{1}{2} \int \left(p^{1/2} - q^{1/2} \right)^2 \, d\mu \right)^{1/2}.$$

(The $1/2$ ensures $0 \leq h(P, Q) \leq 1$. It is defined without it in vdV.)
Theorem:

\[nh^2(P_{\theta_n}, P_{\theta_0}) \to \infty \quad \Rightarrow \quad \| P_{\theta_n}^n - P_{\theta_0}^n \| \to 2, \]
\[nh^2(P_{\theta_n}, P_{\theta_0}) \to 0 \quad \Rightarrow \quad \| P_{\theta_n}^n - P_{\theta_0}^n \| \to 0, \]
\[h^2(P_{\theta_n}, P_{\theta_0}) = \Theta \left(\frac{1}{n} \right) \quad \Rightarrow \quad \| P_{\theta_n}^n - P_{\theta_0}^n \| \not\to \{0, 2\}. \]
Rescaling rates: Hellinger distance

Proof:
Useful properties:

\[2h^2(P, Q) \leq \|P - Q\| \leq 2\sqrt{2}h(P, Q). \]

Also, \(A(P^n, Q^n) = A^n(P, Q) \),

Where

\[A(P, Q) = 1 - h^2(p, q) = \int p^{1/2}q^{1/2} \, d\mu \]

is the Hellinger affinity.
Proof (continued):

\[nh^2(P_{\theta_n}, P_{\theta_0}) \to \infty \]

\[\Rightarrow \quad A(P_{\theta_n}, P_{\theta_0}) = 1 - \omega \left(\frac{1}{n} \right) \]

\[\Rightarrow \quad A(P_{\theta_n}^n, P_{\theta_0}^n) \to 0 \]

\[\Rightarrow \quad h^2(P_{\theta_n}^n, P_{\theta_0}^n) \to 1 \]

\[\Rightarrow \quad \| P_{\theta_n}^n - P_{\theta_0}^n \| \to 2. \]
Rescaling rates: Hellinger distance

Proof (continued):

\[nh^2(P_{\theta_n}, P_{\theta_0}) \to 0 \]

\[\Rightarrow \quad A(P_{\theta_n}, P_{\theta_0}) = 1 - o\left(\frac{1}{n}\right) \]

\[\Rightarrow \quad A(P_{\theta_n}^n, P_{\theta_0}^n) \to 1 \]

\[\Rightarrow \quad h^2(P_{\theta_n}^n, P_{\theta_0}^n) \to 0 \]

\[\Rightarrow \quad \|P_{\theta_n}^n - P_{\theta_0}^n\| \to 0. \]
Rescaling rates: Hellinger distance

Thus, if \(h^2(P_\theta, P_{\theta_0}) = \Theta(|\theta - \theta_0|^{\alpha}) \), then the critical quantity is the limit of

\[
 nh^2(P_{\theta_n}, P_{\theta_0}) = \Theta \left(\left(n^{1/\alpha} |\theta_n - \theta_0| \right)^{\alpha} \right).
\]

If \(P_\theta \) is QMD at \(\theta_0 \), then

\[
 h^2(P_\theta, P_{\theta_0}) = \Theta(|\theta - \theta_0|^2),
\]

that is, \(\alpha = 2 \), so we consider a shrinking alternative with

\[
 \sqrt{n}(\theta_n - \theta_0) \to h.
\]
Rescaling rates: Hellinger distance

Definition: The root density $\theta \mapsto \sqrt{p_\theta}$ (for $\theta \in \mathbb{R}^k$) is **differentiable in quadratic mean** at θ if there exists a vector-valued measurable function $\dot{\ell}_\theta : \mathcal{X} \to \mathbb{R}^k$ such that, for $h \to 0$,

$$
\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_\theta} - \frac{1}{2} h^T \dot{\ell}_\theta \sqrt{p_\theta} \right)^2 d\mu = o(\|h\|^2).
$$

Theorem: If P_θ is QMD at θ and $I_\theta = P_\theta \dot{\ell}_\theta \dot{\ell}_\theta^T$ exists, then

$$
h^2(P_{\theta+h}, P_\theta) = \frac{1}{8} h^T I_\theta h + o(\|h\|^2).
$$
Rescaling rates: Hellinger distance

Proof:

\[2h^2(P_{\theta+h}, P_\theta) = \int (\sqrt{p_{\theta+h}} - \sqrt{p_\theta})^2 \, d\mu \]

\[= \|\sqrt{p_{\theta+h}} - \sqrt{p_\theta}\|_{L_2(\mu)}^2. \]

But QMD implies

\[\left\| \sqrt{p_{\theta+h}} - \sqrt{p_\theta} - \frac{1}{2} h^T \ell_\theta \sqrt{p_\theta} \right\|_{L_2(\mu)}^2 = o(\|h\|^2), \]

and

\[\left\| \frac{1}{2} h^T \ell_\theta \sqrt{p_\theta} \right\|_{L_2(\mu)}^2 = \frac{1}{4} h^T P_\theta \left(\ell_\theta \ell_\theta^T \right) h \]

\[= \frac{1}{4} h^T I_\theta h = O(\|h\|^2). \]
Rescaling rates: Hellinger distance

So

\[2h^2(P_{\theta+h}, P_\theta) = \left\| \sqrt{p_{\theta+h}} - \sqrt{p_\theta} \right\|_{L_2(\mu)}^2 \]

\[= \left\| \frac{1}{2} h^T \ell_\theta \sqrt{p_\theta} + \left(\sqrt{p_{\theta+h}} - \sqrt{p_\theta} - \frac{1}{2} h^T \ell_\theta \sqrt{p_\theta} \right) \right\|_{L_2(\mu)}^2 \]

\[= \frac{1}{4} h^T I_\theta h + o (\| h \|^2) + \left(o(\| h \|^2) O(\| h \|^2) \right)^{1/2} \quad \text{(Cauchy-Schwarz)} \]

\[= \frac{1}{4} h^T I_\theta h + o (\| h \|^2) . \]
Consider P_{θ} uniform on $[0, \theta]$. Recall that this model is not QMD. A straightforward calculation shows that

$$h^2(P_{\theta}, P_{\theta_0}) = \frac{|\theta - \theta_0|}{\theta \lor \theta_0}.$$

So the appropriate shrinking alternative has $n(\theta_n - \theta_0) \to h$.

Rescaling rates: Hellinger distance
Suppose we observe X_1, \ldots, X_n, with density p_θ, $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1$.

For $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$, the optimal test statistic is

$$
\log \prod_{i=1}^{n} \frac{p_{\theta_1}(X_i)}{p_{\theta_0}(X_i)}.
$$

If we have composite hypotheses, we could instead use

$$
\tilde{\Lambda}_n = \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^{n} p_\theta(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^{n} p_\theta(X_i)}.
$$
Likelihood ratio tests

Notice that, for a minimal sufficient statistic T, we can write

$$\tilde{\Lambda}_n = \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^{n} h(X_i) f_\theta(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^{n} h(X_i) f_\theta(T(X_i))}$$

$$= \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^{n} f_\theta(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^{n} f_\theta(T(X_i))},$$

so $\tilde{\Lambda}_n$ depends only on the minimal sufficient statistic.

Since the critical value will be positive, it will not change the test if we replace this statistic by $\tilde{\Lambda}_n \vee 0$. We will also scale it by a factor of 2. (We’ll see that this gives a neater test.)
Define

\[\Lambda_n = 2(\tilde{\Lambda}_n \lor 0) \]

\[= 2 \log \frac{(\sup_{\theta \in \Theta_1} \prod_{i=1}^n p_\theta(X_i)) \lor (\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_\theta(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_\theta(X_i)} \]

\[= 2 \log \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} \prod_{i=1}^n p_\theta(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_\theta(X_i)} \]

\[= 2 \sum_{i=1}^n \left(\ell_{\hat{\theta}_n}(X_i) - \ell_{\hat{\theta}_{n,0}}(X_i) \right), \]

where \(\hat{\theta}_n \) is the maximum likelihood estimator for \(\theta \) over \(\Theta = \Theta_0 \cup \Theta_1 \), and \(\hat{\theta}_{n,0} \) is the maximum likelihood estimator over \(\Theta_0 \).
Likelihood ratio tests

We’ll focus on cases where $\Theta = \Theta_0 \cup \Theta_1$ is a subset of \mathbb{R}^k, and where Θ and Θ_0 are locally linear spaces. Then under H_0, we’ll see that Λ_n is asymptotically chi-square distributed with m degrees of freedom, where $m = \dim(\Theta) - \dim(\Theta_0)$. So we can get a test that is asymptotically of level α by comparing Λ_n to the upper α-quantile of a chi-square distribution.