Theoretical Statistics. Lecture 25.
Peter Bartlett

1. Relative efficiency of tests [vdv14]: Rescaling rates.

2. Likelihood ratio tests [vdv15].




Recall: Relative efficiency of testi

Theorem: Suppose that (1);,, 4, ando are such that, for alh and
0, = 0o+ h/\/n,

\/ﬁ (Tn o ,LL(Hn)) Qﬁ) N(O, 1)7
a(6,)
(2) 1 is differentiable ab, (3) o is continuous ab.

Then a test that rejectd,, : 0 = 0, for large values of’;,, and is asymptot
iIcally of level « satisfies, for alh,

7 (0,) — 1 — @ (za - hi/((gs))) .

So the slope.’(6g) /o (0y) determines the asymptotic power.




‘ Rescaling ratei

So far, we've considered alternatives of the form

h
ane .
o-i-\/ﬁ

This corresponds to choosing a sequeficsuch that the difference,
0,, — 0y, when appropriately rescaled, approaches a constant:

\/ﬁ(@n — 90) — h.

This rescaling rate is appropriate for regular cases. Bwdratates are
possible.




‘ Rescaling rates:Ll-distanceI

Definition: The L;-distance [not total variation] between two distributic
P and(@ with densitiegp = dP/du andq = dQ/du is

[P —Q Z/IP—QIdu-

Lemma: For a sequence of modet’, o with null hypothesisiy : 6 = 6,
and alternativesd, : 0 = 6,,, the power function of any test satisfies

1
7Tn(en) - 7Tn(‘90) < 9 HPn,Qn - Pn,QoH -

Furthermore, there is a test for which equality holds.




‘ Rescaling rates:Ll-distanceI

Consequences:

1. If |Pn.e, — Pno,l| — 2: Some sequence of tests is perfect, that is,
™ (6,) — 1 andm, () — 0.

2. If||P,o, — Pno,|| — 0: Any sequence of tests is worthless, because
Tn(0n) — mn(6p) — 0.

3. If || Pro, — Pn.o,|l is bounded away frorh and2: There is no perfect
sequence of tests, but not all tests are worthless.

This result reveals the appropriate rescaling rate: we figéd approactt
at a rate than ensures an intermediate valugfs, — P 0, |-




‘ Rescaling rates:Ll-distanceI

Proof: First, for any densitiep andg,

02/(p—Q)du

Z/p>q(p—q)du+/p<q(p—Q)du

=/ \p—Q\du—/ p — q| dp,
pP>q p<q

S0 [notice relationship with total variation distance]

/|p—C]|dM:/ \p—Q\d/Hr/ p — q| dp
pP>q p<q

= 2/ p— gl dp.
p>q




‘ Rescaling rates:Ll-distanceI

So we have
Tn(0n) — mn(60) 1T}, € Ky|(Pn,6,, — Pn.6,) ditn
Upn,6, > Pn.ool(Pn.6, — Pn,go) diin
Upn,6, > Pn.6ollPn.6, — Pn.gol ditn
5 [P0, = Preoll
where the upper bound is achieved by the test

[T, € K] = 1[pn.o,, > Pno,)-




Rescaling rates: Hellinger distanci

It's convenient to relate thé -distance to Hellinger distance (because the
product measures are easy to deal with).

Definition: TheHellinger distancebetweenP and( (which have densitie

p andgq) Is
1/2
h(P, Q) _ (%/ (pl/Q B q1/2>2 dlu) |

(Thel/2 ensure®) < h(P,Q) < 1. Itis defined without it in vdV.)




Rescaling rates: Hellinger distanci

Theorem:

nhQ(Pgn,Pgo) — OO ||P97; — ng” — 2,
nh*(Py, ,Ps,) — 0 |Pg — Pg| — 0,

1
W2(Py, Py,) = © (—) 1Pr — P3| 4 {0,2}.

n




Rescaling rates: Hellinger distanci
Proof:

Useful properties:

2h*(P,Q) < | P — Q| < 2v2h(P,Q).
Also,  A(P", Q") = A"(P,Q),

A(P,Q) =1—h*(p,q) = /p1/2q1/2 dp

IS theHellinger affinity .
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Rescaling rates: Hellinger distanci

Proof (continued):

nh2 (Pgn, PQO) — OO

Ao, Po) =1 ()

n

APy, Pgt) — 0
W (Pg ., Py)—1
|1Pg — Pg| — 2.

11



Rescaling rates: Hellinger distanci

Proof (continued):

nh2 (Pgn, PQO) — 0

AP, Po) =10 ()

n
APy Pty — 1
h(Pg,Pg) — 0
|Py — Pj|l — 0.
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Rescaling rates: Hellinger distanci

Thus, ifh?(Py, Py,) = ©(|0 — 65|), then the critical quantity is the limit of

nh2(Py, , Py,) = © (/)6 - 90|)a> |

If Pyis QMD até,, then
1 (Pa, Po,) = ©(|0 — b)),

that is,a = 2, so we consider a shrinking alternative with
\/ﬁ(@n — 90) — h.
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Rescaling rates: Hellinger distanci

Definition:  The root density) — ,/pg (for § € RF) is differentiable
In quadratic mean at ¢ if there exists a vector-valued measurable functi

¢y : X — RF such that, forh, — 0,

G N )

Theorem: If P, is QMD atf andly = Pylgl} exists, then

1
1 (Pon, Pp) = <h' Igh + o([|h]]*).
8
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Rescaling rates: Hellinger distanci

2h*(Poin, Py) = / (v/Po+n — \/]?_0)2 dp
— H\/pG—l-h - \/p_eHiz(M) :

But QMD implies
2

1 .
|Vas — VB - gty = ollhlP)

La(p)
1 .. 2 1 . -
and —h f@d})g == Zh Py (5959) h
2 La(p)

1
— ZhTIQh = O(||R|]?).
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Rescaling rates: Hellinger distanci

VPO+h — \/p_gHig(u)

2

I+ 1.
ShTlo/bo + (WH - Vi - 5%%@)

Lo(p)

1 1/2
= W Ish + o (IR]) + (o([[]*)O(|11)) 12 Caucty schuars

1
— ZhTIQh + o (||h]]?) .

16



Rescaling rates: Hellinger distanci

ConsiderP, uniform on|0, #]. Recall that this model is not QMD. A
straightforward calculation shows that

|0 — 0,

h (P, . Py ) = .
(Fo> Foo ) oV 6,

So the appropriate shrinking alternative ha8,, — 6,) — h.
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\ Likelihood ratio tests I

Suppose we obsenk, ..., X,,, with densitypy,
Hy: 0 € OgversusH; : 0 € ©;.

ForO©, = {6y} and©; = {6}, the optimal test statistic is

i

If we have composite hypotheses, we could instead use

A — log SUPgco, H?:l po(X5)
SUPgco, H?:l po(X5)
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\ Likelihood ratio tests I

Notice that, for a minimal sufficient statistic, we can write

~ SUPgco, | 1;—
A, = log S
Sup@E@o 115

SUDgco, 1 1;=
= log S

Sup@E@o 11;,=

soA,, depends only on the minimal sufficient statistic.

Since the critical value will be positive, it will not changee test if we
replace this statistic byx,, V 0. We will also scale it by a factor of 2. (We'll
see that this gives a neater test.)
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\ Likelihood ratio tests '

Define
A, =2(A, V0)

(SUP0691 H?:1 PG(Xz‘)) \% (Supee@o H?:l pe(Xz'))
SUPgco, H?:1 po(Xi)

SUPgco,u0, H?:1 po(X5)
Sup@E@o H?zl Do (XZ>

—9 i (Eén (X;) — gén’O(Xi)> :

= 2log

= 2log

whereén IS the maximum likelihood estimator férover® = 6, U ©4,
and®,, ; is the maximum likelihood estimator ovex,.
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\ Likelihood ratio tests '

We'll focus on cases wheil@ = O, U O is a subset oR*, and whered
and®, are locally linear spaces. Then undég, we'll see thatA,, is

asymptotically chi-square distributed withh degrees of freedom, where
m = dim(©) — dim(60g). So we can get a test that is asymptotically of

level o by comparing),, to the uppekr-quantile of a chi-square
distribution.
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