
Theoretical Statistics. Lecture 23.
Peter Bartlett

1. Recall: QMD and local asymptotic normality. [vdv7]

2. Convergence of experiments, maximum likelihood.

3. Relative efficiency of tests. [vdv14]
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Local asymptotic normality

We’ve seen that, for a QMD modelPθ, the log likelihood ratio,

log
dPn

θ0+h/
√
n

dPn
θ0

(Xi), is asymptotically normal. This is useful for:

1. Comparing nullθ0 and shrinking alternativeθ0 + h/
√
n with a

likelihood ratio test.

2. Understanding the local behavior of a statisticTn.

If we assume thatθ is fixed, and we understandTn’s asymptotics under

Pθ, we can use the asymptotics of the log likelihood ratio to understand

the asymptotics ofTn in a local neighborhood ofθ. The appropriate

local scale is typically1/
√
n.
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Recall: QMD and local asymptotic normality

Theorem: If Θ is an open subset ofRk, andPθ is QMD atθ ∈ Θ, then

1. Pθ ℓ̇θ = 0.

2. Iθ = Pθ ℓ̇θℓ
T
θ exists.

3. For everyhn satisfying
√
nhn → h,

log
n
∏

i=1

pθ+hn

pθ
(Xi) =

1√
n

n
∑

i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPθ

(1)

θ
 N

(

−1

2
hT Iθh, h

T Iθh

)

.

3



Recall: Quadratic mean differentiability

Definition: The root densityθ 7→ √
pθ (for θ ∈ R

k) is differentiable
in quadratic mean at θ if there exists a vector-valued measurable function

ℓ̇θ : X → R
k such that, forh→ 0,
∫

(

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)2

dµ = o(‖h‖2).
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Recall: Asymptotically linear statistics

Suppose the model{Pθ : θ ∈ Θ} is QMD, and a statisticTn satisfies

√
n (Tn − µθ) =

1√
n

n
∑

i=1

ψθ(Xi) + oPθ
(1),

wherePθψθ = 0 andPθψθψ
T
θ = Σ. Then for

√
nhn → h,

(√
n (Tn − µθ) , log

dPn
θ+hn

dPn
θ

)

θ
 N









0

− 1

2
hT Iθh



 ,





Σ τ

τT hT Iθh







 ,

whereτ = Pθψθh
T ℓ̇θ.

So
√
n(Tn − µθ)

θ+hn

 N
(

Pθψθh
T ℓ̇θ,Σ

)

.
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Asymptotically linear statistics

That is, we know that underθ,

√
n (Tn − µθ)

θ
 N(0,Σ).

And we can use the asymptotics of the log likelihood ratio to determine the

asymptotics of this statistic under the shrinking alternative θ + h/
√
n:

√
n(Tn − µθ)

θ+h/
√
n

 N
(

Pθψθh
T ℓ̇θ,Σ

)

.
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Asymptotically linear statistics: Example

Location families:
Suppose that

pθ(x) = f(x− θ),

wheref is positive, continuously differentiable, and satisfies

µ =

∫

xf(x) dx = 0,

σ2 =

∫

x2f(x) dx <∞,

Iθ =

∫
(

f ′(x)

f(x)

)2

f(x) dx <∞.

This family is QMD.
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Asymptotically linear statistics: Example

1. Consider thet-statistic for the null hypothesisθ = 0,

Tn =
1

n

n
∑

i=1

Xi

Sn

√
nTn =

1√
n

n
∑

i=1

Xi

σ
+ oP0

(1).

Thus,Tn is an asymptotically linear statistic, with

ψθ(x) =
x

σ
,

ℓ̇θ(x) = −f
′(x− θ)

f(x− θ)
.
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Asymptotically linear statistics: Example

Hence, forhn satisfying
√
nhn → h,

√
nTn

hn

 N
(

P0ψ0hℓ̇0, P0ψ
2
0

)

,

P0ψ0hℓ̇0 = −P0

X

σ

f ′(X)

f(X)
h = −h

σ

∫

xf ′(x) dx =
h

σ

∫

f(x) dx =
h

σ
.

P0ψ
2
0 =

1

σ2
P0X

2 = 1.

√
nTn

hn

 N

(

h

σ
, 1

)

.
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Asymptotically linear statistics: Example

2. Suppose thatP0(X > 0) = 1/2 and consider thesign statistic for the
null hypothesisθ = 0,

sn =
1

n

n
∑

i=1

(

1[Xi > 0]− 1

2

)

.

Thus,sn is an asymptotically linear statistic, with

ψθ(x) = 1[x > 0]− Pθ(X > 0),

ℓ̇θ(x) = −f
′(x− θ)

f(x− θ)
.

Hence, forhn satisfying
√
nhn → h,

√
nsn

hn

 N
(

P0ψ0hℓ̇0, P0ψ
2
0

)
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Asymptotically linear statistics: Example

P0ψ0hℓ̇0 = −P0

(

1[X > 0]− 1

2

)

f ′(X)

f(X)
h

= −h
∫

(

1[x > 0]− 1

2

)

f ′(x) dx

=
h

2

(∫ 0

−∞
f ′(x) dx−

∫ ∞

0

f ′(x) dx

)

= hf(0).

P0ψ
2
0 =

1

4
.

√
nsn

hn

 N

(

hf(0),
1

4

)

.
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Convergence of local statistical experiments

Theorem: If
(

Pθ : θ ∈ Θ ⊆ R
k
)

is QMD at θ with nonsingu-

lar Fisher informationIθ, Tn are statistics in the local experiments
(

Pθ+h/
√
n : h ∈ R

k
)

, and for everyh there is a lawLh s.t.Tn
h
 Lh. Then

there is a randomized statisticT in the experiment
(

N
(

h, I−1

θ

)

: h ∈ R
k
)

such that for eachh, Tn
h
 T .

The proof uses the Le Cam lemmas (change of measure via the

asymptotically normal log-likelihood ratio)
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Convergence of local statistical experiments

For the local statistical experiment,
(

Pn
θ+h/

√
n : h ∈ R

k
)

,

think of θ as a particular parameter value, andθ + h/
√
n as a nearby value.

We are interested in the asymptotic behavior of statistics when the
parameter is near the valueθ.

Motivation:

• If Tn defines a test, then the powerPh(Tn > c) depends on the law of
Tn, so we can study its asymptotics via statistics in a normal
experiment.

• If Tn is an estimator, then we can study the asymptotics of the expected
squared errorEh(Tn − h)2 via statistics in a normal experiment.
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Maximum likelihood

Consider the maximum likelihood estimatorTn = ĥn for the local

experiment
(

Pn
θ+h/

√
n : h ∈ R

k
)

.

(Notice that̂hn =
√
n(θ̂n − θ).) Typically, the matching asymptotic

statistic in the limit experiment is the maximum likelihoodestimator

T = X ∼ N
(

h, I−1

θ

)

. So we expect the asymptotic distribution of√
n(θ̂n − θ) to beN

(

0, I−1

θ

)

underθ.

Note that the previous theorem does not imply that this particular statistic in

the limit experiment (the maximum likelihood estimator) isthe weak limit

of theTn. This needs some additional conditions.
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Maximum likelihood

Theorem: Suppose

1. (Pθ : θ ∈ Θ) is QMD atθ with nonsingular Fisher informationIθ,

2. for everyx, θ 7→ log pθ(x) is Lipschitz, and

3. the maximum likelihood estimator̂θn is consistent.

Then √
n(θ̂n − θ)

θ
 N(0, I−1

θ ).

15



Relative efficiency of tests

Example: SupposeX1, . . . , Xn ∼ Pθ, where

1. Pθ has densityf(x− θ) onR,

2. f is symmetric about zero (so the mean=median ofPθ is θ),

3. f has a unique median (f(0) 6= 0),

4. f has a finite variance.

We wish to testH0 : θ = 0 versusH1 : θ > 0.
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Relative efficiency of tests

Example: Candidate tests:

1. Sign test:Sn =
1

n

n
∑

i=1

1[Xi > 0].

2. t-test:Tn =
1

n

n
∑

i=1

Xi

Sn
.

Which is better?
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Relative efficiency of tests: sign test

Sn =
1

n

n
∑

i=1

1[Xi > 0].

√
n

σ(θ)
(Sn − µ(θ)) N(0, 1),

where µ(θ) = 1− F (−θ),
σ2(θ) = (1− F (−θ))F (−θ).

Thus, 2
√
n

(

Sn − 1

2

)

0
 N(0, 1).

RejectH0 if 2
√
n(Sn − 1/2) > zα.
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Relative efficiency of tests: sign test

Definition: The power function of a test that rejects the null hypothesis

when the statisticTn falls in the critical regionKn is

πn(θ) = Pθ(Tn ∈ Kn).

For the sign test,

πn(θ) = Pθ

(√
n (Sn − µ(0)) > σ(0)zαn

)

= Pθ

( √
n

σ(θ)
(Sn − µ(θ)) >

σ(0)zαn
+

√
n (µ(0)− µ(θ))

σ(θ)

)

= 1− Φ

(

σ(0)zαn
+
√
n (µ(0)− µ(θ))

σ(θ)

)

+ o(1).
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Relative efficiency of tests: sign test

Forθ = 0, we haveπn(0) = 1− Φ(zαn
) = αn.

Forθ > 0, µ(0)− µ(θ) = F (−θ)− F (0) < 0.

Providedαn → 0 sufficiently slowly,

πn(θ) = 1− Φ

(

σ(0)zαn
+
√
n (µ(0)− µ(θ))

σ(θ)

)

+ o(1)

→







0 if θ = 0,

1 if θ > 0.

So the limiting power function is perfect.

This is typical: any reasonable test can distinguish a fixed alternative, given

unlimited data.
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Relative efficiency of tests

So how do we compare tests? We need to make the problem of

discriminating between the null and the alternative more difficult asn

increases. It is natural to consider ashrinking alternative , that converges

to the null.

Recall our example:

We wish to testH0 : θ = 0 versusH1 : θn > 0, with θn → 0.
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Relative efficiency of tests

For the sign test,

πn(θn) = 1− Φ

(

σ(0)zα +
√
n (µ(0)− µ(θn))

σ(θn)

)

+ o(1).

The level of the test converges:

πn(0) = 1− Φ (zα) + o(1) → α.

What about the power?

It depends on the asymptotics of
√
n (µ(0)− µ(θn)). SinceF is

differentiable at0,
√
n (µ(0)− µ(θn)) =

√
n (F (−θn)− F (0)) = −

√
nθnf(0) + o(

√
nθn).
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Relative efficiency of tests

If θn → θ faster than1/
√
n,

√
n (µ(0)− µ(θn)) → 0, soπn(θn) → α. The

test fails: these alternatives are too hard.

Forθn → θ slower than1/
√
n,

√
n (µ(0)− µ(θn)) → −∞, so

πn(θn) → 1. These slowly shrinking alternatives are too easy.

Consider an intermediate rate:√
nθn → h.
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