Theoretical Statistics. Lecture 23.
Peter Bartlett

1. Recall: QMD and local asymptotic normality. [vdv7]

2. Convergence of experiments, maximum likelihood.

3. Relative efficiency of tests. [vdv14]




‘ Local asymptotic normality I

We've seen that, for a QMD modé}), the log likelihood ratio,

dpgngh/\/ﬁ

Py

log (X;), is asymptotically normal. This is useful for:

1. Comparing nulby and shrinking alternativé, + h/+/n with a
likelihood ratio test.

. Understanding the local behavior of a statigiic
If we assume that is fixed, and we understand,’s asymptotics under
Py, we can use the asymptotics of the log likelihood ratio toarathnd
the asymptotics of;, in a local neighborhood af. The appropriate
local scale is typicallyl /1/n.




Recall: QMD and local asymptotic normality'

Theorem: If © is an open subset @*, andP, is QMD até € O, then
1. Pyly = 0.
2. Iy = P@f@fg exists.

3. For everyh,, satisfying/nh,, — h,

log [ T %= (x:) = (X;) = 5hTToh + op, (1)
1=1 )

1
4N (—§hTIQh, thgh) |




‘ Recall: Quadratic mean differentiability I

Definition:

The root density) — ,/py (for 6 € R¥) is differentiable

In quadratic mean at ¢ if there exists a vector-valued measurable functi
¢y : X — RF such that, forh, — 0,

G N )




‘ Recall: Asymptotically linear statistics'

Suppose the modélP, : § € ©} is QMD, and a statisti@’;, satisfies
Vn (T — pg) =

where Py = 0 and Pytpeyp) = X. Then fory/nh,, — h,

APy 0 >
(\/ﬁ(Tn — 1g) ,log QJ:?") N : ' :
ary “InTrnh | \+T KTIh

wherer = P@Zﬂ@ hTéQ.

0+hny ;
SO\/ﬁ(Tn —,ug) —NI—H N (PgwghT€9,2>.




‘ Asymptotically linear statistics I

That is, we know that unde,

\/E<Tn - U@) & N(07 E)'

And we can use the asymptotics of the log likelihood ratiodtednine the
asymptotics of this statistic under the shrinking altexeed + 2 /+/n:

0+h/\/n .
V(T — o) UV N (PewehTfe, E) :




Asymptotically linear statistics: Example'

Location families:
Suppose that

po(x) = f(z —0),

where f is positive, continuously differentiable, and satisfies

uz/wf(:v)d:vz(),

a— /a:2f(a:)da: < 00,

(5 o<

This family is QMD.




Asymptotically linear statistics: Example'

1. Consider the-statistic for the null hypothesig = 0,

1 v X;
Tn:ﬁizzls_n

— T Opo(l)'

: o}
1=1

Thus,T,, Is an asymptotically linear statistic, with




Asymptotically linear statistics: Example'

Hence, forh,, satisfying\/nh,, — h,

VT, 2 N (Polbohéo, P0¢8) :

Pyipohly = —POX f,(X)h =2 /l’f/(:v) dx = h

o f(X) %

O

1
Po)g = §P0X2 = 1.




Asymptotically linear statistics: Example'

2. Suppose thaPy (X > 0) = 1/2 and consider theign statisticfor the
null hypothesig) = 0,

:—Z< 1[X; >O—%)

Thus,s,, is an asymptotically linear statistic, with
Yo(x) = 1]z > 0] — Py(X > 0),

f'w—0)
f(xz—0)
Hence, forh,, satisfying\/nh,, — h,

Vs, %5 N <P0¢0héo, Powg)

f@(ﬂ?) = —
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Asymptotically linear statistics: Example'
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‘ Convergence of local statistical experiment'

Theorem: If (Pp:0€0©CRF) is QMD at 6 with nonsingu-
lar Fisher informationly, 7, are statistics in the local experimel

(Pyin/ym - h € R¥), and for everyh there is a lawi, s.t.T;, L L, Then
there is a randomized statisfitin the experimen{N (h,I, ") : h € R¥)

such that for each, 7, N

The proof uses the Le Cam lemmas (change of measure via the
asymptotically normal log-likelinood ratio)
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‘ Convergence of local statistical experiment'

For the local statistical experiment,

n ) k
(Ppiy g h € RY),

think of  as a particular parameter value, & h//n as a nearby value.
We are interested in the asymptotic behavior of statistivtsmthe
parameter is near the valée

Motivation:

o If T, defines a test, then the powE ('7;, > c¢) depends on the law of
T, SO we can study its asymptotics via statistics in a normal
experiment.

o If T}, Is an estimator, then we can study the asymptotics of thectxpe
squared erroE;, (T}, — h)? via statistics in a normal experiment.
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\ Maximum likelihood '

Consider the maximum likelihood estimafB = h,, for the local
experiment

n ) k
<P9+h/ﬁ.heﬂ2{).

(Notice thath,, = \/n(6,, — 0).) Typically, the matching asymptotic

statistic in the limit experiment is the maximum likelihoestimator

T =X ~ N (h,I,"). So we expect the asymptotic distribution of
Vn(0, —0)tobeN (0,1, ) underd.

Note that the previous theorem does not imply that this paer statistic in

the limit experiment (the maximum likelihood estimatorjhe weak limit
of theT),. This needs some additional conditions.
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\ Maximum likelihood '

Theorem: Suppose
1. (P : 0 € ©)is QMD atf with nonsingular Fisher informatiofy,
2. for everyzx, 0 — log py(x) is Lipschitz, and
3. the maximum likelihood estimaté, is consistent.

Then
A 0 _
Vn(f, —0) ~ N(0,1,").
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Relative efficiency of testj

Example: SupposeX;,..., X, ~ Py, where
1. Py has densityf(z — 6) onR,

2. fIs symmetric about zero (so the mean=media®oIls 6),
3. f has a unique mediarf (0) # 0),

4. f has a finite variance.

We wish to tesiH : 6 = 0 versusH; : 6 > 0.
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Relative efficiency of testj

Example: Candidate tests:

1 mn
1. Signtest:sS,, = — 11.X; > 0].
9 n; [X; > 0]

1 «— X;
2. t-test:T,, = — .

Which is better?
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‘ Relative efficiency of tests: sign tej

RejectHy if 2¢/n(S, — 1/2) > z,.
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‘ Relative efficiency of tests: sign tei

Definition: The power function of a test that rejects the null hypoth
when the statisti@’, falls in the critical regionk,, is

7rn(9) = Pg(Tn ~ Kn)

For the sign test,

T (0) = Py (v (Sn — 12(0)) > 0(0)za,,)

_ P@ (% <Sn o M<9)> > O'(O)Zan + \g_ﬁ(;;u(()) o M(@)))

—1_® (O’(O)Zan + \g_ﬁ(;;u(()) B M(@))) + 0(1)
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‘ Relative efficiency of tests: sign tei

Ford = 0, we haver,,(0) = 1 — ®(z,, ) = .
Forf > 0, u(0) — u(0) = F(—60) — F(0) < 0.
Provideda,, — 0 sufficiently slowly,

O'(O)Zan + ﬁ(:u(o) B M(@))) 4+ 0<1)

Wn(!g)zl—q)( - (0)
{o it 0= 0,
N
i >0

So the limiting power function is perfect.

This is typical: any reasonable test can distinguish a fixiedrative, given
unlimited data.
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Relative efficiency of testj

So how do we compare tests? We need to make the problem of
discriminating between the null and the alternative mofcdit asn

Increases. It is natural to consideslarinking alternative, that converges
to the null.

Recall our example:
We wish to testH : 6 = 0 versusH; : 6,, > 0, with 6,, — 0.
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Relative efficiency of testj

For the sign test,

(0, = 1—<1><

The level of the test converges:
Tn(0) =1 —® (24) +0(1) = a.

What about the power?

It depends on the asymptotics- @ (1.(0) — (60,,)). SinceF is
differentiable ab,
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Relative efficiency of testj

If 6,, — 6 faster thanl /\/n, v/n (1(0) — p(0,)) — 0, somw,(6,) — a. The
test falls: these alternatives are too hard.

Foré@, — 6 slower thanl /\/n, v/n (1(0) — u(0,)) — —o0, SO
mn(0n) — 1. These slowly shrinking alternatives are too easy.

Consider an intermediate rate:
Vb, — h.
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