Theoretical Statistics. Lecture 20. Peter Bartlett

1. Recall:

Functional delta method, differentiability in normed spaces, Hadamard derivatives. [vdV20]

- 2. Quantile estimates. [vdV21]
- 3. Contiguity. [vdV6]

Recall: Differentiability of functions in normed spaces

Definition: $\phi : D \to E$ is *Hadamard differentiable* at $\theta \in D$ tangentially to $D_0 \subseteq D$ if

$$\exists \phi'_{\theta} : D_0 \to E \text{ (linear, continuous), } \forall h \in D_0,$$

if $t \to 0$, $||h_t - h|| \to 0$, then
$$\left\| \frac{\phi(\theta + th_t) - \phi(\theta)}{t} - \phi'_{\theta}(h) \right\| \to 0.$$

Recall: Functional delta method

Theorem: Suppose $\phi : D \to E$, where D and E are normed linear spaces. Suppose the statistic $T_n : \Omega_n \to D$ satisfies $\sqrt{n}(T_n - \theta) \rightsquigarrow T$ for a random element T in $D_0 \subset D$.

If ϕ is Hadamard differentiable at θ tangentially to D_0 then

 $\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(T).$

If we can extend $\phi': D_0 \to E$ to a continuous map $\phi': D \to E$, then

$$\sqrt{n}(\phi(T_n) - \phi(\theta)) = \phi'_{\theta}(\sqrt{n}(T_n - \theta)) + o_P(1).$$

Recall: Quantiles

Definition: The quantile function of F is $F^{-1}: (0,1) \to \mathbb{R}$,

$$F^{-1}(p) = \inf\{x : F(x) \ge p\}.$$

• *Quantile transformation*: for U uniform on (0, 1),

$$F^{-1}(U) \sim F.$$

- Probability integral transformation: for X ~ F, F(X) is uniform on
 [0,1] iff F is continuous on ℝ.
- F^{-1} is an inverse (i.e., $F^{-1}(F(x)) = x$ and $F(F^{-1}(p)) = p$ for all x and p) iff F is continuous and strictly increasing.

Empirical quantile function

For a sample with distribution function F, define the *empirical quantile* function as the quantile function F_n^{-1} of the empirical distribution function F_n .

$$F_n^{-1}(p) = \inf\{x : F_n(x) \ge p\} = X_{n(i)},$$

where i is chosen such that

$$\frac{i-1}{n}$$

and $X_{n(1)}, \ldots, X_{n(n)}$ are the order statistics of the sample, that is, $X_{n(1)} \leq \cdots \leq X_{n(n)}$ and

 $(X_{n(1)},\ldots,X_{n(n)})$

is a permutation of the sample (X_1, \ldots, X_n) .

Define $\phi: D[a, b] \to \mathbb{R}$ as the *p*th quantile function $\phi(F) = F^{-1}(p)$.

Here, D[a, b] is the set of *cadlag* functions on [a, b], considered as a subset of $\ell^{\infty}[a, b]$:

cadlag = continue à droite, limite à gauche

= right continuous, with left limits.

Recall:

$$\phi'_F(s_x - F) = \frac{p - s_x(F^{-1}(p))}{f(F^{-1}(p))}$$
$$= -\frac{(s_x - F)(x_p)}{F'(x_p)}.$$

Proof:

Because $\{x \mapsto 1 [x \leq a] : a \in \mathbb{R}\}$ is Donsker, $\operatorname{conv}\{x \mapsto 1 [x \leq a] : a \in \mathbb{R}\}$ is Donsker, hence $\mathbb{G}_{n,F} = \sqrt{n}(F_n - F)$ converges weakly in $D[-\infty, \infty]$ to an *F*-Brownian bridge process $\mathbb{G}_F = \mathbb{G}_{\lambda} \circ F$.

[Recall that \mathbb{G}_{λ} is the standard uniform Brownian bridge.] The sample paths of \mathbb{G}_F are continuous at points where F is continuous.

Now, $\phi: F \mapsto F^{-1}(p)$ is Hadamard-differentiable tangentially to the set D_0 of cadlag functions that are continuous where F is continuous. And the limiting process \mathbb{G}_F takes its values in this set D_0 . Furthermore, ϕ'_F is defined and continuous everywhere in $\ell^{\infty}[-\infty,\infty]$.

Hence, we can use the functional delta method:

$$\sqrt{n}(\phi(F_n) - \phi(F)) = \phi'_F \left(\sqrt{n}(F_n - F)\right) + o_P(1)$$
$$= \phi'_F (\mathbb{G}_{n,F}) + o_P(1).$$

We can extend this result to the process $\sqrt{n}(F_n^{-1} - F^{-1})$, provided the differentiability conditions are satisfied over a set...

(Recall: C[a, b] is the set of continuous functions on [a, b].)

(Recall: weak convergence in a metric space of functions is defined in terms of expectations of bounded continuous functions in the space.)

Contiguity

Motivation:

Suppose we wish to study the asymptotics of statistics T_n . Under the null hypothesis, say, $T_n \sim P_n$, we can show that $T_n \rightsquigarrow T$. What happens when the null hypothesis is not true? For instance, under the alternative hypothesis, $T_n \sim Q_n$. What can we say about the asymptotics?

We can relate them through **likelihood ratios** (also called **Radon-Nikodym derivatives**):

$$\frac{dP_n}{dQ_n} = \frac{p_n}{q_n},$$

where p_n and q_n are the corresponding densities. For these to make sense, we need the ratio to exist, and in particular we need $q_n = 0$ only if $p_n = 0$, at least asymptotically.

Absolute Continuity

We can always decompose Q into a part that is absolutely continuous wrt P and a part that is orthogonal (singular): Suppose that P and Q have densities p and q wrt some measure μ .

Define

$$Q^{a}(A) = Q (A \cap \{p > 0\}),$$
$$Q^{\perp}(A) = Q (A \cap \{p = 0\}).$$

Absolute Continuity

Lemma:

r

1. $Q = Q^a + Q^{\perp}$, with $Q^a \ll P$ and $Q^{\perp}P$ (Lebesgue decomposition)

2.
$$Q^{a}(A) = \int_{A} \frac{q}{p} dP.$$

3. $Q \ll P \Leftrightarrow Q = Q^{a} \Leftrightarrow Q(p=0) = 0 \Leftrightarrow \int \frac{q}{p} dP = 1.$

Absolute Continuity

Proof:

(1) is immediate from the definitions.

(2):

$$Q^{a}(A) = \int_{A \cap \{p > 0\}} q \, d\mu$$
$$= \int_{A \cap \{p > 0\}} \frac{q}{p} p \, d\mu$$
$$= \int_{A \cap \{p > 0\}} \frac{q}{p} \, dP.$$

Likelihood ratios

Write the likelihood ratio (= Radon-Nikodym derivative):

$$\frac{dQ}{dP} = \frac{q}{p}$$

This is defined on $\Omega_P = \{p > 0\}$, and it is *P*-almost surely unique. It does not depend on the choice of dominating measure μ that is used to define the densities *p* and *q*.

Likelihood ratios: Change of measure

If $Q \ll P$ then $Q = Q^a$, so we can write the Q-law of $X : \Omega \to \mathbb{R}^k$ in terms of the P-law of the random pair (X, dQ/dP), via

$$\mathbf{E}_Q f(X) = \mathbf{E}_P f(X) \frac{dQ}{dP},$$
$$Q(X \in A) = \mathbf{E}_P \left[\mathbb{1}[X \in A] \frac{dQ}{dP} \right] = \int_{A \times \mathbb{R}} v \, dP_{X,V}(x,v),$$

where we have written the distribution under P of (X, V) = (X, dQ/dP) as $P_{X,V}$.

This change of measure requires that Q is absolutely continuous wrt P.

Contiguity

We are interested in an asymptotic version of this change of measure. That is, we know the asymptotics of $T_n \sim P_n$, and we'd like to infer the asymptotics under an alternative sequence Q_n . When can we do that? We clearly need an asymptotic version of absolute continuity. This is called **contiguity**.

Definition: $Q_n \triangleleft P_n$ (" Q_n is contiguous wrt P_n ") means, $\forall A_n$,

$$P_n(A_n) \to 0 \Longrightarrow Q_n(A_n) \to 0.$$