
Theoretical Statistics. Lecture 20.
Peter Bartlett

1. Recall:

Functional delta method, differentiability in normed spaces, Hadamard

derivatives. [vdV20]

2. Quantile estimates. [vdV21]

3. Contiguity. [vdV6]
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Recall: Differentiability of functions in normed spaces

Definition: φ : D → E is Hadamard differentiableat θ ∈ D tangentially

toD0 ⊆ D if

∃φ′
θ : D0 → E (linear, continuous),∀h ∈ D0,

if t → 0, ‖ht − h‖ → 0, then
∥

∥

∥

∥

φ(θ + tht)− φ(θ)

t
− φ′

θ(h)

∥

∥

∥

∥

→ 0.

2



Recall: Functional delta method

Theorem: Supposeφ : D → E, whereD andE are normed linear spaces.

Suppose the statisticTn : Ωn → D satisfies
√
n(Tn−θ) T for a random

elementT in D0 ⊂ D.

If φ is Hadamard differentiable atθ tangentially toD0 then

√
n(φ(Tn)− φ(θ)) φ′

θ(T ).

If we can extendφ′ : D0 → E to a continuous mapφ′ : D → E, then

√
n(φ(Tn)− φ(θ)) = φ′

θ(
√
n(Tn − θ)) + oP (1).
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Recall: Quantiles

Definition: Thequantile functionof F isF−1 : (0, 1) → R,

F−1(p) = inf{x : F (x) ≥ p}.

• Quantile transformation: for U uniform on(0, 1),

F−1(U) ∼ F.

• Probability integral transformation: for X ∼ F , F (X) is uniform on

[0,1] iff F is continuous onR.

• F−1 is an inverse (i.e.,F−1(F (x)) = x andF (F−1(p)) = p for all x

andp) iff F is continuous and strictly increasing.
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Empirical quantile function

For a sample with distribution functionF , define theempirical quantile

functionas the quantile functionF−1
n of the empirical distribution function

Fn.

F−1
n (p) = inf{x : Fn(x) ≥ p} = Xn(i),

wherei is chosen such that

i− 1

n
< p ≤ i

n
,

andXn(1), . . . , Xn(n) are the order statistics of the sample, that is,
Xn(1) ≤ · · · ≤ Xn(n) and

(

Xn(1), . . . , Xn(n)

)

is a permutation of the sample(X1, . . . , Xn).
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Quantiles

Defineφ : D[a, b] → R as thepth quantile functionφ(F ) = F−1(p).

Here,D[a, b] is the set ofcadlagfunctions on[a, b], considered as a subset

of ℓ∞[a, b]:

cadlag= continueà droite, limiteà gauche

= right continuous, with left limits.
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Quantiles

Theorem: If

• F ∈ D[a, b],

• xp satisfiesF (xp) = p,

• F is differentiable atxp, with F ′(xp) > 0,

thenφ is Hadamard-differentiable atF tangentially to

{h ∈ D[a, b] : h is continuous atxp} .

Its Hadamard derivative is the (continuous) function

φ′
F (h) = − h(xp)

F ′(xp)
.
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Quantiles

Recall:

φ′
F (sx − F ) =

p− sx(F
−1(p))

f(F−1(p))

= − (sx − F )(xp)

F ′(xp)
.
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Quantiles

Theorem: For

• 0 < p < 1,

• F differentiable atF−1(p),

• F ′(F−1(p)) = f(F−1(p)) > 0,

√
n
(

F−1
n (p)− F−1(p)

)

= − 1√
n

n
∑

i=1

1[Xi ≤ F−1(p)]− p

f(F−1(p))
+ oP (1)

 N

(

0,
p(1− p)

f2(F−1(p))

)

.
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Quantiles

Proof:

Because{x 7→ 1[x ≤ a] : a ∈ R} is Donsker,

conv{x 7→ 1[x ≤ a] : a ∈ R} is Donsker, hence

Gn,F =
√
n(Fn − F ) converges weakly inD[−∞,∞] to anF -Brownian

bridge processGF = Gλ ◦ F .

[Recall thatGλ is the standard uniform Brownian bridge.]

The sample paths ofGF are continuous at points whereF is continuous.

Now,φ : F 7→ F−1(p) is Hadamard-differentiable tangentially to the set

D0 of cadlag functions that are continuous whereF is continuous. And the

limiting processGF takes its values in this setD0. Furthermore,φ′
F is

defined and continuous everywhere inℓ∞[−∞,∞].
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Quantiles

Hence, we can use the functional delta method:

√
n(φ(Fn)− φ(F )) = φ′

F

(√
n(Fn − F )

)

+ oP (1)

= φ′
F (Gn,F ) + oP (1).

We can extend this result to the process
√
n(F−1

n − F−1), provided the

differentiability conditions are satisfied over a set...
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Quantiles

Theorem: Suppose

• 0 < p1 < p2 < 1,

• [a, b] = [F−1(p1)− ǫ, F−1(p2) + ǫ], for someǫ > 0,

• F continuously differentiable and with positive derivativef on [a, b],

• φ : D[a, b] → ℓ∞[p1, p2] is defined byφ(G) = G−1.

Thenφ is Hadamard differentiable atF tangentially toC[a, b], with

φ′
F (h) = −

(

h

f

)

◦ F−1.

(Recall:C[a, b] is the set of continuous functions on[a, b].)
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Quantiles

Theorem: For

• 0 < p1 < p2 < 1,

• [a, b] = [F−1(p1)− ǫ, F−1(p2) + ǫ], for someǫ > 0, and

• F continuously differentiable and with positive derivativef on [a, b],

√
n
(

F−1
n − F−1

)

 

Gλ

f ◦ F−1
,

where the convergence is inℓ∞[p1, p2], andGλ is the standard Brownian

bridge.

(Recall: weak convergence in a metric space of functions is defined in terms
of expectations of bounded continuous functions in the space.)

13



Contiguity

Motivation:

Suppose we wish to study the asymptotics of statisticsTn. Under the null

hypothesis, say,Tn ∼ Pn, we can show thatTn  T . What happens when

the null hypothesis is not true? For instance, under the alternative

hypothesis,Tn ∼ Qn. What can we say about the asymptotics?

We can relate them throughlikelihood ratios (also calledRadon-Nikodym
derivatives):

dPn

dQn

=
pn
qn

,

wherepn andqn are the corresponding densities. For these to make sense,

we need the ratio to exist, and in particular we needqn = 0 only if pn = 0,

at least asymptotically.
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Absolute Continuity

Definition:

1. Q ≪ P (“Q is absolutely continuouswrt P ”) means∀A,

P (A) = 0 =⇒ Q(A) = 0.

2. P ⊥ Q (“P andQ areorthogonal”) means∃ΩP ,ΩQ,

P (ΩP ) = 1, Q(ΩP ) = 0,

Q(ΩQ) = 1, P (ΩQ) = 0.
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Absolute Continuity: Examples

Example:

1. P = N(0, 1), Q = N(µ, σ2) with σ2 > 0.

ThenP (A) = 0 ⇔ Q(A) = 0. Hence,P ≪ Q andQ ≪ P .

2. P = N(0, 1), Q is uniform on[0, 1]. ThenQ ≪ P but notP ≪ Q.

3. P = N(0, 1), Q is a mixture of a normal and a point mass atx:

Q(x) > 0. ThenP ≪ Q but notQ ≪ P .

4. P is uniform on [−1/2, 1/2], Q is uniform on [0, 1]. Then neither

Q ≪ P norP ≪ Q.
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Absolute Continuity

We can always decomposeQ into a part that is absolutely continuous wrtP

and a part that is orthogonal (singular):

Suppose thatP andQ have densitiesp andq wrt some measureµ.

Define

Qa(A) = Q (A ∩ {p > 0}) ,
Q⊥(A) = Q (A ∩ {p = 0}) .
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Absolute Continuity

Lemma:

1. Q = Qa +Q⊥, with

Qa ≪ P andQ⊥P (Lebesgue decomposition)

2. Qa(A) =

∫

A

q

p
dP .

3. Q ≪ P ⇔ Q = Qa ⇔ Q(p = 0) = 0 ⇔
∫

q

p
dP = 1.
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Absolute Continuity

Proof:

(1) is immediate from the definitions.

(2):

Qa(A) =

∫

A∩{p>0}

q dµ

=

∫

A∩{p>0}

q

p
p dµ

=

∫

A∩{p>0}

q

p
dP.
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Absolute Continuity

(3):

Q ≪ P ⇔ Q = Qa

⇔ Q⊥ = 0

⇔ Q(p = 0) = 0, from the definitions.
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Absolute Continuity

Also,
∫

dQ =

∫

dQa +

∫

dQ⊥

=

∫

q

p
dP +

∫

dQ⊥,

so
∫

q/p dP = 1 ⇔ Q⊥ = 0.
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Likelihood ratios

Write the likelihood ratio (= Radon-Nikodym derivative):

dQ

dP
=

q

p
.

This is defined onΩP = {p > 0}, and it isP -almost surely unique. It does

not depend on the choice of dominating measureµ that is used to define the

densitiesp andq.

22



Likelihood ratios: Change of measure

If Q ≪ P thenQ = Qa, so we can write theQ-law ofX : Ω → R
k in

terms of theP -law of the random pair(X, dQ/dP ), via

EQf(X) = EP f(X)
dQ

dP
,

Q(X ∈ A) = EP

[

1[X ∈ A]
dQ

dP

]

=

∫

A×R

v dPX,V (x, v),

where we have written the distribution underP of (X,V ) = (X, dQ/dP )

asPX,V .

This change of measure requires thatQ is absolutely continuous wrtP .
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Contiguity

We are interested in an asymptotic version of this change of measure. That

is, we know the asymptotics ofTn ∼ Pn, and we’d like to infer the

asymptotics under an alternative sequenceQn. When can we do that? We

clearly need an asymptotic version of absolute continuity.This is called

contiguity.

Definition: Qn ⊳ Pn (“Qn is contiguous wrtPn”) means,∀An,

Pn(An) → 0 =⇒ Qn(An) → 0.
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