1. Recall:
 Functional delta method, differentiability in normed spaces, Hadamard derivatives. [vdV20]

2. Quantile estimates. [vdV21]

3. Contiguity. [vdV6]
Recall: Differentiability of functions in normed spaces

Definition: \(\phi : D \to E \) is Hadamard differentiable at \(\theta \in D \) tangentially to \(D_0 \subseteq D \) if

\[
\exists \phi'_\theta : D_0 \to E \text{ (linear, continuous)}, \; \forall h \in D_0, \\
\text{if } t \to 0, \|h_t - h\| \to 0, \text{ then} \\
\left\| \frac{\phi(\theta + th_t) - \phi(\theta)}{t} - \phi'_\theta(h) \right\| \to 0.
\]
Recall: Functional delta method

Theorem: Suppose $\phi : D \to E$, where D and E are normed linear spaces. Suppose the statistic $T_n : \Omega_n \to D$ satisfies $\sqrt{n}(T_n - \theta) \rightsquigarrow T$ for a random element T in $D_0 \subset D$.

If ϕ is Hadamard differentiable at θ tangentially to D_0 then

$$\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'(\theta)(T).$$

If we can extend $\phi' : D_0 \to E$ to a continuous map $\phi' : D \to E$, then

$$\sqrt{n}(\phi(T_n) - \phi(\theta)) = \phi'(\sqrt{n}(T_n - \theta)) + o_P(1).$$
Recall: Quantiles

Definition: The quantile function of F is $F^{-1} : (0, 1) \to \mathbb{R}$,

$$F^{-1}(p) = \inf\{x : F(x) \geq p\}.$$

- **Quantile transformation:** for U uniform on $(0, 1)$,

 $$F^{-1}(U) \sim F.$$

- **Probability integral transformation:** for $X \sim F$, $F(X)$ is uniform on $[0, 1]$ iff F is continuous on \mathbb{R}.

- F^{-1} is an inverse (i.e., $F^{-1}(F(x)) = x$ and $F(F^{-1}(p)) = p$ for all x and p) iff F is continuous and strictly increasing.
Empirical quantile function

For a sample with distribution function F, define the empirical quantile function as the quantile function F_n^{-1} of the empirical distribution function F_n.

$$F_n^{-1}(p) = \inf \{ x : F_n(x) \geq p \} = X_{n(i)},$$

where i is chosen such that

$$\frac{i - 1}{n} < p \leq \frac{i}{n},$$

and $X_{n(1)}, \ldots, X_{n(n)}$ are the order statistics of the sample, that is, $X_{n(1)} \leq \cdots \leq X_{n(n)}$ and

$$(X_{n(1)}, \ldots, X_{n(n)})$$

is a permutation of the sample (X_1, \ldots, X_n).

5
Define $\phi : D[a, b] \rightarrow \mathbb{R}$ as the pth quantile function $\phi(F) = F^{-1}(p)$.

Here, $D[a, b]$ is the set of *cadlag* functions on $[a, b]$, considered as a subset of $\ell^\infty[a, b]$:

cadlag = *continue à droite, limite à gauche*

= right continuous, with left limits.
Theorem: If

- $F \in D[a, b],$
- x_p satisfies $F(x_p) = p,$
- F is differentiable at $x_p,$ with $F'(x_p) > 0,$

then ϕ is Hadamard-differentiable at F tangentially to

$$\{h \in D[a, b] : h \text{ is continuous at } x_p\}.$$

Its Hadamard derivative is the (continuous) function

$$\phi'_F(h) = -\frac{h(x_p)}{F'(x_p)}.$$
Recall:

\[
\phi_F'(s_x - F) = \frac{p - s_x(F^{-1}(p))}{f(F^{-1}(p))}
\]

\[
= -\frac{(s_x - F)(x_p)}{F'(x_p)}.
\]
Theorem: For

- $0 < p < 1$,
- F differentiable at $F^{-1}(p)$,
- $F'(F^{-1}(p)) = f(F^{-1}(p)) > 0$,

$$
\sqrt{n} \left(F_n^{-1}(p) - F^{-1}(p) \right) = -\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{1[X_i \leq F^{-1}(p)] - p}{f(F^{-1}(p))} + o_P(1)
$$

$$
\sim N \left(0, \frac{p(1-p)}{f^2(F^{-1}(p))} \right).
$$
Proof:
Because \(\{x \mapsto 1[x \leq a] : a \in \mathbb{R} \} \) is Donsker,
\(\text{conv}\{x \mapsto 1[x \leq a] : a \in \mathbb{R} \} \) is Donsker, hence
\(G_{n,F} = \sqrt{n}(F_n - F) \) converges weakly in \(D[-\infty, \infty] \) to an \(F \)-Brownian bridge process \(G_F = G_\lambda \circ F \).

[Recall that \(G_\lambda \) is the standard uniform Brownian bridge.]
The sample paths of \(G_F \) are continuous at points where \(F \) is continuous.

Now, \(\phi : F \mapsto F^{-1}(p) \) is Hadamard-differentiable tangentially to the set \(D_0 \) of cadlag functions that are continuous where \(F \) is continuous. And the limiting process \(G_F \) takes its values in this set \(D_0 \). Furthermore, \(\phi'_F \) is defined and continuous everywhere in \(\ell^\infty[-\infty, \infty] \).
Hence, we can use the functional delta method:

\[
\sqrt{n}(\phi(F_n) - \phi(F)) = \phi'_F(\sqrt{n}(F_n - F)) + o_P(1)
\]

\[
= \phi'_F(G_{n,F}) + o_P(1).
\]

We can extend this result to the process \(\sqrt{n}(F_n^{-1} - F^{-1})\), provided the differentiability conditions are satisfied over a set...
Theorem: Suppose

- $0 < p_1 < p_2 < 1$,
- $[a, b] = [F^{-1}(p_1) - \epsilon, F^{-1}(p_2) + \epsilon]$, for some $\epsilon > 0$,
- F continuously differentiable and with positive derivative f on $[a, b]$,
- $\phi : D[a, b] \rightarrow \ell^\infty[p_1, p_2]$ is defined by $\phi(G) = G^{-1}$.

Then ϕ is Hadamard differentiable at F tangentially to $C[a, b]$, with

$$\phi'_F(h) = -\left(\frac{h}{f}\right) \circ F^{-1}.$$

(Recall: $C[a, b]$ is the set of continuous functions on $[a, b]$.)
Quantiles

Theorem: For

- $0 < p_1 < p_2 < 1$,
- $[a, b] = [F^{-1}(p_1) - \epsilon, F^{-1}(p_2) + \epsilon]$, for some $\epsilon > 0$, and
- F continuously differentiable and with positive derivative f on $[a, b]$,

$$\sqrt{n} \left(F_{n}^{-1} - F^{-1} \right) \rightsquigarrow \frac{G_{\lambda}}{f \circ F^{-1}},$$

where the convergence is in $\ell^\infty[p_1, p_2]$, and G_{λ} is the standard Brownian bridge.

(Recall: weak convergence in a metric space of functions is defined in terms of expectations of bounded continuous functions in the space.)
Motivation:
Suppose we wish to study the asymptotics of statistics T_n. Under the null hypothesis, say, $T_n \sim P_n$, we can show that $T_n \rightsquigarrow T$. What happens when the null hypothesis is not true? For instance, under the alternative hypothesis, $T_n \sim Q_n$. What can we say about the asymptotics?

We can relate them through likelihood ratios (also called Radon-Nikodym derivatives):

$$\frac{dP_n}{dQ_n} = \frac{p_n}{q_n},$$

where p_n and q_n are the corresponding densities. For these to make sense, we need the ratio to exist, and in particular we need $q_n = 0$ only if $p_n = 0$, at least asymptotically.
Absolute Continuity

Definition:

1. $Q \ll P$ (“Q is absolutely continuous wrt P”) means $\forall A$,

 $$P(A) = 0 \implies Q(A) = 0.$$

2. $P \perp Q$ (“P and Q are orthogonal”) means $\exists \Omega_P, \Omega_Q$,

 $$P(\Omega_P) = 1, \quad Q(\Omega_P) = 0,$$

 $$Q(\Omega_Q) = 1, \quad P(\Omega_Q) = 0.$$
Absolute Continuity: Examples

Example:

1. $P = N(0, 1)$, $Q = N(\mu, \sigma^2)$ with $\sigma^2 > 0$.
 Then $P(A) = 0 \iff Q(A) = 0$. Hence, $P \ll Q$ and $Q \ll P$.

2. $P = N(0, 1)$, Q is uniform on $[0, 1]$. Then $Q \ll P$ but not $P \ll Q$.

3. $P = N(0, 1)$, Q is a mixture of a normal and a point mass at x:
 $Q(x) > 0$. Then $P \ll Q$ but not $Q \ll P$.

4. P is uniform on $[-1/2, 1/2]$, Q is uniform on $[0, 1]$. Then neither $Q \ll P$ nor $P \ll Q$.
Absolute Continuity

We can always decompose Q into a part that is absolutely continuous wrt P and a part that is orthogonal (singular):

Suppose that P and Q have densities p and q wrt some measure μ.

Define

$$Q^a(A) = Q(A \cap \{p > 0\}),$$

$$Q^\perp(A) = Q(A \cap \{p = 0\}).$$
Absolute Continuity

Lemma:

1. \(Q = Q^a + Q^\perp \), with
 \(Q^a \ll P \) and \(Q^\perp \parallel P \) \hspace{1cm} \text{(Lebesgue decomposition)}

2. \(Q^a(A) = \int_A \frac{q}{p} dP \).

3. \(Q \ll P \iff Q = Q^a \iff Q(p = 0) = 0 \iff \int \frac{q}{p} dP = 1 \).
Absolute Continuity

Proof:
(1) is immediate from the definitions.

(2):

\[
Q^a(A) = \int_{A \cap \{p>0\}} q \, d\mu = \int_{A \cap \{p>0\}} \frac{q}{p} \, d\mu = \int_{A \cap \{p>0\}} \frac{q}{p} \, dP.
\]
Absolute Continuity

(3):

\[Q \ll P \iff Q = Q^a \]

\[\iff Q^\perp = 0 \]

\[\iff Q(p = 0) = 0, \quad \text{from the definitions.} \]
Also,

\[
\int dQ = \int dQ^a + \int dQ^\perp \\
= \int \frac{q}{p} dP + \int dQ^\perp,
\]

so

\[
\int \frac{q}{p} dP = 1 \iff Q^\perp = 0.
\]
Likelihood ratios

Write the likelihood ratio (\(=\) Radon-Nikodym derivative):
\[
\frac{dQ}{dP} = \frac{q}{p}.
\]

This is defined on \(\Omega_P = \{p > 0\}\), and it is \(P\)-almost surely unique. It does not depend on the choice of dominating measure \(\mu\) that is used to define the densities \(p\) and \(q\).
Likelihood ratios: Change of measure

If $Q \ll P$ then $Q = Q^a$, so we can write the Q-law of $X : \Omega \rightarrow \mathbb{R}^k$ in terms of the P-law of the random pair $(X, dQ/dP)$, via

$$
\mathbb{E}_Q f(X) = \mathbb{E}_P f(X) \frac{dQ}{dP},
$$

$$
Q(X \in A) = \mathbb{E}_P \left[1[X \in A] \frac{dQ}{dP} \right] = \int_{A \times \mathbb{R}} v \, dP_{X,V}(x,v),
$$

where we have written the distribution under P of $(X, V) = (X, dQ/dP)$ as $P_{X,V}$.

This change of measure requires that Q is absolutely continuous wrt P.

23
We are interested in an asymptotic version of this change of measure. That is, we know the asymptotics of $T_n \sim P_n$, and we’d like to infer the asymptotics under an alternative sequence Q_n. When can we do that? We clearly need an asymptotic version of absolute continuity. This is called contiguity.

Definition: $Q_n \triangleleft P_n$ (“Q_n is contiguous wrt P_n”) means, $\forall A_n,$

$$P_n(A_n) \to 0 \implies Q_n(A_n) \to 0.$$