Theoretical Statistics. Lecture 20.
Peter Bartlett

1. Recall:
Functional delta method, differentiability in normed spacHadamard

derivatives. [vdV20]
2. Quantile estimates. [vdV21]

3. Contiguity. [vdV6]




‘ Recall: Differentiability of functions in normed spaces'

Definition: ¢ : D — FE is Hadamard differentiabl@at € D tangentially
to Dy C D if

d¢y : Dy — FE (linear, continuous)yh € Dy,
if t — 0, |[hs — h|| = 0, then

(0 +thy) — ¢(0)
t

— ¢’9(h)H — 0.




Recall: Functional delta method'

Theorem: Suppose : D — E, whereD andE are normed linear spaces.

Suppose the statisti, : 2, — D satisfies,/n(T,, —0) ~~ T for arandom
elementl’ in Dy C D.

If ¢ is Hadamard differentiable ad tangentially toD, then

V(1) — ¢(6)) ~ ¢4(T).

If we can extend)’ : Dy — E to a continuous map’ : D — FE, then

\/ﬁ((b(Tn) - ¢(9)) — (/ble(\/ﬁ(Tn - ‘9)) + OP(1)°




‘ Recall: Quantiles'

Definition: Thequantile functiorof Fis F~1: (0,1) — R,

F~1(p) =inf{x: F(x) > p}.

e Quantile transformationfor U uniform on(0, 1),

F1(U)~F

o Probability integral transformationfor X ~ F', F'(X) is uniform on
[0,1] iff F'is continuous orR.

o F~lisaninverse (i.ef ' (F(z)) = vz andF(F~1(p)) = pforall x
andp) iff F'is continuous and strictly increasing.




‘ Empirical quantile function I

For a sample with distribution functioh, define theempirical quantile
functionas the quantile functio ! of the empirical distribution function
F,.

Fo(p) = inf{x : Fy(x) > p} = X,0),

n

where: is chosen such that
1 — 1 )
< p S R
n n
and X, ),..., X, ) are the order statistics of the sample, that Is,

(Xn(1)s- > X))

IS a permutation of the sampl&X4, ..., X,,).




Quantiles'

Define¢ : D|a,b] — R as thepth quantile functionp(F') = F~1(p).

Here,D|a, b] is the set otadlagfunctions ona, b], considered as a subset
of £°°|a, b]:

cadlag= continuea droite, limitea gauche

= right continuous, with left limits.




Quantiles'

Theorem: If
F € Dla,b],
x,, satisfiesF'(x,) = p,
F is differentiable atr,,, with £'(x,) > 0,

then¢ is Hadamard-differentiable &t tangentially to
{h € Dla,b] : hiscontinuous at,} .

Its Hadamard derivative is the (continuous) function

_ h(zp)
F'(xp)




Quantiles'

Recall:

s, — 1) = Lm0




Quantiles'

Theorem: For
0<p<l,
F differentiable atF"—!(p),
F'(F~'(p)) = f(F~*(p)) >0,




Quantiles'

Proof:

Becausdx — 1[x < a] : a € R} is Donsker,
conv{z — 1|z < a] : a € R} is Donsker, hence
Gn.r = /n(F, — F) converges weakly iD[—oo, o] to an F-Brownian

bridge proces&r = Gy o F.

[Recall thatG ), Is the standard uniform Brownian bridge.]
The sample paths d@f » are continuous at points whekéis continuous.

Now, ¢ : F' — F~1(p) is Hadamard-differentiable tangentially to the set
D, of cadlag functions that are continuous whéres continuous. And the
limiting processG r takes its values in this séd,. Furthermoreg’. is
defined and continuous everywhere&/ifi|—oo, co].
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Quantiles'

Hence, we can use the functional delta method:

Vi(o(Fn) — ¢(F)) = ¢ (Vn(F, — F)) + op(1)

= ¢ (Gn.r) + op(1).

We can extend this result to the procegs(F,, ! — F~1), provided the
differentiability conditions are satisfied over a set...
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Quantiles'

Theorem: Suppose
o 0 < p1 <p2 <1,
o [a,b] = [F~1(p1) — ¢, F~(p2) + €], for somee > 0,
e F' continuously differentiable and with positive derivatifi®n [a, b],
o ¢ : Dla,b] — £°°[p1, po] is defined by (G) = G~ 1.
Theng is Hadamard differentiable & tangentially toC'a, b], with

(Recall: Cla, b] is the set of continuous functions @n b].)
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Quantiles'

Theorem: For
o 0 < p1 <p2<l,
o [a,b] = [F~1(p1) — ¢, F~(p2) + €, for somee > 0, and
e F' continuously differentiable and with positive derivatifi®n [a, b],

G

Vi (B = F) foF-1

where the convergence is #°[p1, p2], andG, is the standard Brownia
bridge.

(Recall: weak convergence in a metric space of functionsgfiméed in terms
of expectations of bounded continuous functions in theespac
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‘Contiguity I

Motivation:

Suppose we wish to study the asymptotics of statigticsUnder the null
hypothesis, sayl;,, ~ P,,, we can show thdt,, ~~ T'. What happens when

the null hypothesis is not true? For instance, under therative
hypothesisy,, ~ @Q,,. What can we say about the asymptotics?

We can relate them throudiikelihood ratios (also calledRadon-Nikodym

derivatives):
dP,  pn

dQn,  Gn’
wherep,, andg,, are the corresponding densities. For these to make senge,

we need the ratio to exist, and in particular we negd= 0 only if p,, = 0,
at least asymptotically.
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‘Absolute Continuity I

Definition:

1. Q < P (*(Q isabsolutely continuouswrt P") meansv A,

P(A)=0= Q(A) =0.

2. P 1 Q (“P and(Q areorthogonal’) means3{1p, (2q,
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Absolute Continuity: Examples'

Example:

1. P=N(0,1),Q = N(u,c?) with 0% > 0.
ThenP(A) =0< Q(A) = 0. Hence,P <« @ and@ < P.

(
2. P=N(0,1), Q is uniform on|0, 1]. Then@ < P but notP < Q.

3. P = N(0,1), @ is a mixture of a normal and a point masszat
Q(x) > 0. ThenP < @ but not@Q <« P.

4. P is uniform on[—1/2,1/2], @ is uniform on|[0, 1]. Then neithe
Q < PnorP < Q.
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‘Absolute Continuity I

We can always decomposgginto a part that is absolutely continuous vt
and a part that is orthogonal (singular):

Suppose thaP and() have densitiep andq wrt some measurg.

Define

QY(A)=Q(AN{p>0}),
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‘Absolute Continuity I

Lemma:

1. Q = Q%+ Q-+, with
Q¢ < PandQ+P (Lebesgue decomposition)

2. Qa(A):/A%dP.

3. QKPP & Q=0Q% < Qp —O@/dP—l
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‘Absolute Continuity I
Proof:

(1) is iImmediate from the definitions.

(2):

@@= qan
ANn{p>0}
= / —pdjp
An{p>0} P

_ / 1ap.
An{p>0} P
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‘Absolute Continuity I

QK PsQ=0Q
S Q=0
S Qp=0)=0, from the definitions.
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‘Absolute Continuity I
[ o= [aq + [aq*

:/%dp+/ﬁ@&

Qt =0.
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\ Likelihood ratios I

Write the likelihood ratio £ Radon-Nikodym derivative):
aQ _

_ 4
dP p

This is defined of2p = {p > 0}, and it isP-almost surely unique. It does
not depend on the choice of dominating meagutieat is used to define the
densitiegp andg.
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Likelihood ratios: Change of measurﬂ

If Q < Pthen@ = Q¢%, so we can write th€)-law of X : Q@ — R¥ in
terms of theP-law of the random paif.X, dQ/dP), via

Eqf(X)=Epf(X );Zg

Q(X € A) = [ X € A] fg] /AXRMPX,V(J;,U),

where we have written the distribution und@nf (X, V) = (X, dQ/dP)
aSPX,V.

This change of measure requires thais absolutely continuous wi?.
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‘Contiguity I

We are interested in an asymptotic version of this changeeafsmre. That
IS, we know the asymptotics @f, ~ P,,, and we’d like to infer the
asymptotics under an alternative sequefige When can we do that? We
clearly need an asymptotic version of absolute contindikys is called

contiguity.

Definition: @, < P,, (“Q,, I1s contiguous wriP,,”) means\YA,,,

P,(A,) - 0= Q,(4,) — 0.
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