Theoretical Statistics. Lecture 1.
Peter Bartlett

1. Organizational issues.
2. Overview.
Organizational Issues

- Lectures: Tue/Thu 11am–12:30pm, 332 Evans.
- Peter Bartlett. bartlett@stat. Office hours: Tue 1-2pm, Wed 1:30-2:30pm (Evans 399).
- GSI: Siqi Wu. siqi@stat. Office hours: Mon 3:30-4:30pm, Tue 3:30-4:30pm (Evans 307).
- http://www.stat.berkeley.edu/~bartlett/courses/210b-spring2013/
 Check it for announcements, homework assignments, ...
- Texts:
 Available on-line at
Organizational Issues

- **Assessment:**
 Homework Assignments (60%): posted on the website.
 Final Exam (40%): scheduled for Thursday, 5/16/13, 8-11am.

- **Required background:**
 Stat 210A, and either Stat 205A or Stat 204.
Asymptotics: Why?

Example: We have a sample of size n from a density p_θ. Some estimator gives $\hat{\theta}_n$.

- Consistent? i.e., $\hat{\theta}_n \to \theta$? Stochastic convergence.
- Rate? Is it optimal? Often no finite sample optimality results. Asymptotically optimal?
- Variance of estimate? Optimal? Asymptotically?
- Distribution of estimate? Confidence region. Asymptotically?
Example: We have a sample of size n from a density p_{θ}. Maximum likelihood estimator gives $\hat{\theta}_n$.

Under mild conditions, $\sqrt{n}(\hat{\theta}_n - \theta)$ is asymptotically $N(0, I^{-1}_{\theta})$. Thus $\sqrt{n}I_{\theta}^{1/2}(\hat{\theta}_n - \theta) \sim N(0, I)$, and $n(\hat{\theta}_n - \theta)^T I_{\theta}(\hat{\theta}_n - \theta) \sim \chi^2(k)$.

So we have an approximate $1 - \alpha$ confidence region for θ:

$$\left\{ \theta : (\theta - \hat{\theta}_n)^T I_{\hat{\theta}_n}(\theta - \hat{\theta}_n) \leq \frac{\chi_{k, \alpha}^2}{n} \right\}.$$
Overview of the Course

1. Tools for consistency, rates, asymptotic distributions:
 - Stochastic convergence.
 - Concentration inequalities.
 - Projections.
 - U-statistics.
 - Delta method.

2. Tools for richer settings (eg: function space vs \mathbb{R}^k)
 - Uniform laws of large numbers.
 - Empirical process theory.
 - Metric entropy.
 - Functional delta method.
3. Tools for asymptotics of likelihood ratios:
 - Contiguity.
 - Local asymptotic normality.

4. Asymptotic optimality:
 - Efficiency of estimators.
 - Efficiency of tests.

5. Applications:
 - Nonparametric regression.
 - Nonparametric density estimation.
 - M-estimators.
 - Bootstrap estimators.
Convergence in Distribution

X_1, X_2, \ldots, X are random vectors,

Definition: X_n converges in distribution (or weakly converges) to X (written $X_n \rightsquigarrow X$) means that their distribution functions satisfy $F_n(x) \to F(x)$ at all continuity points of F.
d is a distance on \mathbb{R}^k (for which the Borel σ-algebra is the usual one).

Definition: X_n converges almost surely to X (written $X_n \xrightarrow{a.s.} X$) means that $d(X_n, X) \rightarrow 0$ a.s.

Definition: X_n converges in probability to X (written $X_n \xrightarrow{P} X$) means that, for all $\epsilon > 0$,

$$P \left(d(X_n, X) > \epsilon \right) \rightarrow 0.$$
Review: Other Types of Convergence

Theorem:

\[X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{\sim} X, \]

\[X_n \xrightarrow{P} c \iff X_n \xrightarrow{\sim} c. \]

NB: For \(X_n \xrightarrow{a.s.} X \) and \(X_n \xrightarrow{P} X \), \(X_n \) and \(X \) must be functions on the sample space of the same probability space. But not convergence in distribution.
Convergence in Distribution: Equivalent Definitions

Theorem: [Portmanteau] The following are equivalent:

1. \(P(X_n \leq x) \to P(X \leq x) \) for all continuity points \(x \) of \(P(X \leq \cdot) \).
2. \(E f(X_n) \to E f(X) \) for all bounded, continuous \(f \).
3. \(E f(X_n) \to E f(X) \) for all bounded, Lipschitz \(f \).
4. \(E e^{it^T X_n} \to E e^{it^T X} \) for all \(t \in \mathbb{R}^k \). (Lévy’s Continuity Theorem)
5. for all \(t \in \mathbb{R}^k, t^T X_n \rightsquigarrow t^T X \). (Cramér-Wold Device)
6. \(\lim \inf E f(X_n) \geq E f(X) \) for all nonnegative, continuous \(f \).
7. \(\lim \inf P(X_n \in U) \geq P(X \in U) \) for all open \(U \).
8. \(\lim \sup P(X_n \in F) \leq P(X \in F) \) for all closed \(F \).
9. \(P(X_n \in B) \to P(X \in B) \) for all continuity sets \(B \)
 (i.e., \(P(X \in \partial B) = 0 \)).
Convergence in Distribution: Equivalent Definitions

Example: [Why do we need continuity?]
Consider \(f(x) = 1[x > 0], \ X_n = 1/n \). Then \(X_n \to 0, f(x) \to 1 \), but \(f(0) = 0 \).

[Why do we need boundedness?]
Consider \(f(x) = x \),

\[
X_n = \begin{cases}
 n & \text{w.p. } 1/n, \\
 0 & \text{w.p. } 1 - 1/n.
\end{cases}
\]

Then \(X_n \rightsquigarrow 0, \ E f(X_n) \to 1 \), but \(f(0) = 0 \).
Relating Convergence Properties

Theorem:

\[X_n \rightsquigarrow X \text{ and } d(X_n, Y_n) \xrightarrow{P} 0 \implies Y_n \rightsquigarrow X, \]

\[X_n \rightsquigarrow X \text{ and } Y_n \rightsquigarrow c \implies (X_n, Y_n) \rightsquigarrow (X, c), \]

\[X_n \xrightarrow{P} X \text{ and } Y_n \xrightarrow{P} Y \implies (X_n, Y_n) \xrightarrow{P} (X, Y). \]
Example: NB: **NOT** $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y \implies (X_n, \ Y_n) \rightsquigarrow (X, \ Y)$.

(joint convergence versus marginal convergence in distribution)

Consider $X, \ Y$ independent $N(0, \ 1)$, $X_n \sim N(0, \ 1)$, $Y_n = -X_n$. Then $X_n \rightsquigarrow X$, $Y_n \rightsquigarrow Y$, but $(X_n, \ Y_n) \rightsquigarrow (X, -X)$, which has a very different distribution from that of (X, Y).

Relating Convergence Properties
Suppose \(f : \mathbb{R}^k \to \mathbb{R}^m \) is “almost surely continuous”
(i.e., for some \(S \) with \(P(X \in S) = 1 \), \(f \) is continuous on \(S \)).

Theorem: [Continuous mapping]

\[
\begin{align*}
X_n \rightsquigarrow X & \implies f(X_n) \rightsquigarrow f(X). \\
X_n \overset{P}{\to} X & \implies f(X_n) \overset{P}{\to} f(X). \\
X_n \overset{a.s.}{\to} X & \implies f(X_n) \overset{a.s.}{\to} f(X).
\end{align*}
\]
Relating Convergence Properties: Continuous Mapping

Example: For X_1, \ldots, X_n i.i.d. mean μ, variance σ^2, we have

$$\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \xrightarrow{d} N(0, 1).$$

So

$$\frac{n}{\sigma^2}(\bar{X}_n - \mu)^2 \xrightarrow{d} (N(0, 1))^2 = \chi_1^2.$$

Example: We also have $\bar{X}_n - \mu \xrightarrow{d} 0$ hence $(\bar{X}_n - \mu)^2 \xrightarrow{d} 0$. Consider $f(x) = 1[x > 0]$. Then $f((\bar{X}_n - \mu)^2) \xrightarrow{d} 1 \neq f(0)$.

(The problem is that f is not continuous at 0, and $P_X(0) > 0$, for X satisfying $(\bar{X}_n - \mu)^2 \xrightarrow{d} X$.)
Relating Convergence Properties: Slutsky’s Lemma

Theorem: $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ imply

\begin{align*}
X_n + Y_n &\rightsquigarrow X + c, \\
Y_n X_n &\rightsquigarrow cX, \\
Y_n^{-1} X_n &\rightsquigarrow c^{-1} X.
\end{align*}

(Why does $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y$ not imply $X_n + Y_n \rightsquigarrow X + Y$?)
Theorem: For i.i.d. Y_t with $\mathbb{E}Y_1 = \mu$, $\mathbb{E}Y_1^2 = \sigma^2 < \infty$,

$$\sqrt{n} \frac{\bar{Y}_n - \mu}{S_n} \xrightarrow{\text{d}} N(0, 1),$$

where

$$\bar{Y}_n = n^{-1} \sum_{i=1}^{n} Y_i,$$

$$S_n^2 = (n - 1)^{-1} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2.$$
Proof:

\[S_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \left(\frac{\bar{Y}_n}{\sqrt{\text{E} Y_1^2}} \right)^2 \right) \]

(weak law of large numbers)

\[\xrightarrow{P} \text{E} Y_1^2 - (\text{E} Y_1)^2 \]

(continuous mapping theorem, Slutsky’s Lemma)

\[= \sigma^2. \]
Also

\[\sqrt{n} \left(\bar{Y}_n - \mu \right) \sim N(0, \sigma^2) \quad \frac{1}{S_n} \xrightarrow{P} \frac{1}{\sigma} \]

(central limit theorem)

\[\sim N(0, 1) \]

(continuous mapping theorem, Slutsky’s Lemma)
Showing Convergence in Distribution

Recall that the characteristic function demonstrates weak convergence: \(X_n \rightsquigarrow X \iff \mathbb{E}e^{it^T X_n} \to \mathbb{E}e^{it^T X}\) for all \(t \in \mathbb{R}^k\).

Theorem: [Lévy’s Continuity Theorem]
If \(\mathbb{E}e^{it^T X_n} \to \phi(t)\) for all \(t\) in \(\mathbb{R}^k\), and \(\phi : \mathbb{R}^k \to \mathbb{C}\) is continuous at 0, then \(X_n \rightsquigarrow X\), where \(\mathbb{E}e^{it^T X} = \phi(t)\).

Special case: \(X_n = Y\). So \(X, Y\) have same distribution iff \(\phi_X = \phi_Y\).
Theorem: [Weak law of large numbers]
Suppose X_1, \ldots, X_n are i.i.d. Then $\bar{X}_n \xrightarrow{P} \mu$ iff $\phi'_{X_1}(0) = i\mu$.

Proof:
We’ll show that $\phi'_{X_1}(0) = i\mu$ implies $\bar{X}_n \xrightarrow{P} \mu$. Indeed,

$$Ee^{it\bar{X}_n} = \phi^n(t/n) = (1 + ti\mu/n + o(1/n))^n \rightarrow e^{it\mu} = \phi_\mu(t).$$

Lévy’s Theorem implies $\bar{X}_n \xrightarrow{d} \mu$, hence $\bar{X}_n \xrightarrow{P} \mu$.
e.g., $X \sim N(\mu, \Sigma)$ has characteristic function

$$\phi_X(t) = \mathbb{E}e^{it^T X} = e^{it^T \mu - t^T \Sigma t/2}.$$

Theorem: [Central limit theorem]
Suppose X_1, \ldots, X_n are i.i.d., $\mathbb{E}X_1 = 0$, $\mathbb{E}X_1^2 = 1$. Then $\sqrt{n} \bar{X}_n \sim N(0, 1)$.
Proof: $\phi_{X_1}(0) = 1$, $\phi'_{X_1}(0) = iE X_1 = 0$, $\phi''_{X_1}(0) = i^2 E X_1^2 = -1$.

$$E e^{it\sqrt{n}\bar{X}_n} = \phi^n(t/\sqrt{n})$$

$$= (1 + 0 - t^2 E Y^2/(2n) + o(1/n))^n$$

$$\to e^{-t^2/2}$$

$$= \phi_{N(0,1)}(t).$$
Definition:

X is **tight** means that for all $\epsilon > 0$ there is an M for which

$$P(\|X\| > M) < \epsilon.$$

$\{X_n\}$ is **uniformly tight** (or **bounded in probability**) means that for all $\epsilon > 0$ there is an M for which

$$\sup_n P(\|X_n\| > M) < \epsilon.$$

(so there is a compact set that contains each X_n with high probability.)
Notation: Uniformly tight

Theorem: [Prohorov’s Theorem]

1. $X_n \rightsquigarrow X$ implies $\{X_n\}$ is uniformly tight.
2. $\{X_n\}$ uniformly tight implies that for some X and some subsequence, $X_{n_j} \rightsquigarrow X$.
Notation for rates: \(o_P, O_P \)

Definition:

\[
X_n = \omega_P(1) \iff X_n \xrightarrow{p} 0,
\]

\[
X_n = \omega_P(R_n) \iff X_n = Y_n R_n \text{ and } Y_n = \omega_P(1).
\]

\[
X_n = O_P(1) \iff X_n \text{ uniformly tight}
\]

\[
X_n = O_P(R_n) \iff X_n = Y_n R_n \text{ and } Y_n = O_P(1).
\]

(i.e., \(o_P, O_P \) specify *rates* of growth of a sequence. \(o_P \) means strictly slower (sequence \(Y_n \) converges in probability to zero). \(O_P \) means within some constant (sequence \(Y_n \) lies in a ball).
Relations between rates

\[o_P(1) + o_P(1) = o_P(1). \]
\[o_P(1) + O_P(1) = O_P(1). \]
\[o_P(1) O_P(1) = o_P(1). \]
\[(1 + o_P(1))^{-1} = O_P(1). \]
\[o_P(O_P(1)) = o_P(1). \]

\[X_n \xrightarrow{P} 0, \ R(h) = o(\|h\|^p) \implies R(X_n) = o_P(\|X_n\|^p). \]
\[X_n \xrightarrow{P} 0, \ R(h) = O(\|h\|^p) \implies R(X_n) = O_P(\|X_n\|^p). \]