Theoretical Statistics. Lecture 11.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

1. Vapnik-Chervonenkis dimension.
2. Structural results for Rademacher complexity.
3. Metric entropy.
Recall: Uniform laws and Rademacher complexity

Theorem: For $F \subset [0, 1]^X$,

$$\frac{1}{2} \mathbb{E} \| R_n \|_F - \sqrt{\frac{\log 2}{2n}} \leq \mathbb{E} \| P - P_n \|_F \leq 2 \mathbb{E} \| R_n \|_F,$$

and, with probability at least $1 - 2 \exp(-2\epsilon^2 n)$,

$$\mathbb{E} \| P - P_n \|_F - \epsilon \leq \| P - P_n \|_F \leq \mathbb{E} \| P - P_n \|_F + \epsilon.$$

Thus, $\mathbb{E} \| R_n \|_F \to 0$ iff $\| P - P_n \|_F \xrightarrow{a.s.} 0$.
Recall: Growth function

Definition: For a class $F \subseteq \{0, 1\}^\mathcal{X}$, the **growth function** is

$$\Pi_F(n) = \max\{|F(x_1^n)| : x_1, \ldots, x_n \in \mathcal{X}\}.$$

$$\mathbf{E}\|R_n\|_F \leq \sqrt{\frac{2\log(2\Pi_F(n))}{n}}.$$ Notice that $\log \Pi_F(n) = o(n)$ implies $\mathbf{E}\|R_n\|_F \to 0.$
Recall: Vapnik-Chervonenkis dimension

Definition: A class $F \subseteq \{0, 1\}^\mathcal{X}$ shatters $\{x_1, \ldots, x_d\} \subseteq \mathcal{X}$ means that $|F(x_1^d)| = 2^d$.

The Vapnik-Chervonenkis dimension of F is

$$d_{VC}(F) = \max \{d : \text{some } x_1, \ldots, x_d \in \mathcal{X} \text{ is shattered by } F\}$$

$$= \max \{d : \Pi_F(d) = 2^d\}.$$
Recall: “Sauer’s Lemma”

Theorem: [Vapnik-Chervonenkis] \(d_{VC}(F') \leq d \) implies

\[
\Pi_F(n) \leq \sum_{i=0}^{d} \binom{n}{i}.
\]

If \(n \geq d \), the latter sum is no more than \(\left(\frac{en}{d} \right)^d \).

\[
\Pi_F(n) \begin{cases}
= 2^n & \text{if } n \leq d, \\
\leq (e/d)^d n^d & \text{if } n > d.
\end{cases}
\]
Consider a parameterized class of binary-valued functions,

\[F = \{ x \mapsto f(x, \theta) : \theta \in \mathbb{R}^p \}, \]

where \(f : \mathbb{R}^m \times \mathbb{R}^p \to \{ \pm 1 \} \).

Suppose that \(f \) can be computed using no more than \(t \) operations of the following kinds:

1. arithmetic (+, −, ×, /),
2. comparisons (> = <),
3. output \(\pm 1 \).

Theorem: \(d_{VC}(F) \leq 4p(t + 2) \).
VC-dimension bounds for parameterized families

Proof idea:
Any f of this kind can be expressed as
$f(x, \theta) = h(\text{sign}(g_1(x, \theta)), \ldots, \text{sign}(g_k(x, \theta)))$ for functions g_i that are polynomial in θ, and some boolean function h. (Notice that $k \leq 2^t$, and the degree of any polynomial g_i is no more than 2^t.) Notice that a change of the value of f must be due to a change of the sign of one of the g_i. Hence, $\Pi_F(n) \leq$ number of connected components in \mathbb{R}^d after the sets $g_i(x_j) = 0$ are removed. We won’t go through the proof of this (it can be found in Neural Network Learning: Theoretical Foundations). It is rather similar to the case of linear threshold functions, which we’ll look at next.
Consider \(f(x, \theta) = \text{sign}(w^T x - w_0) \), where \(x \in \mathbb{R}^d \) and \(\theta = (w^T, w_0) \). Then \(f \) can only change value on some \(x_1, \ldots, x_n \) for \(\theta \) such that \(w^T - w_0 = 0 \). Then (provided these zero sets satisfy some genericity condition), \(|F(x^n)| = C(n, d + 1) \), where \(C(n, d + 1) \) is the number of cells created in \(\mathbb{R}^{d+1} \) when \(n \) hyperplanes are removed.

Inductive argument: \(C(1, d) = 2 \). And \(C(n + 1, d) = C(n, d) + C(n, d - 1) \). To see this, notice that when we have \(n \) planes in \(\mathbb{R}^p \), and we add a plane, the number of cells that we split in two is precisely the number of cells in the \(d - 1 \)-subspace of the new plane that the first \(n \) planes leave. Then an inductive argument shows that

\[
\Pi_F(n) = C(n, d + 1) = 2 \sum_{i=0}^{d} \binom{n-1}{i}.
\]

[Schaffli, 1851.]
Rademacher complexity: structural results

1. $F \subseteq G$ implies $\|R_n\|_F \leq \|R_n\|_G$.

2. $\|R_n\|_{cF} = |c|\|R_n\|_F$.

3. For $|g(X)| \leq 1$, $|E\|R_n\|_{F+g} - E\|R_n\|_F| \leq \sqrt{2 \log 2/n}$.

4. $\|R_n\|_{co F} = \|R_n\|_F$, where $co F$ is the convex hull of F.

5. If $\phi : \mathcal{X} \times \mathbb{R}$ has $y \mapsto \phi(x, y)$ 1-Lipschitz for all x and $\phi(x, 0) = 0$, then for $\phi(F) = \{x \mapsto \phi(x, f(x))\}$, $E\|R_n\|_{\phi(F)} \leq 2E\|R_n\|_F$.
Proofs:
(1) and (2) are immediate. For (3):

\[\| R_n \|_{F+g} = \sup_{f \in F} \left\| \frac{1}{n} \sum_{i} \epsilon_i (f(X_i) + g(X_i)) \right\|, \]

so

\[\| \mathbb{E} \| R_n \|_{F+g} - \mathbb{E} \| R_n \|_F \| \leq \mathbb{E} \| R_n(g) \| \leq \sqrt{\frac{2 \log 2}{n}} \]

for \(|g(X)| \leq 1 \).

(4) follows from the fact that a linear criterion in a convex set is maximized at an extreme point.

(5) is a result due to Ledoux and Talagrand. See website for a link to a proof.
Definition: A pseudometric space \((S, d)\) is a set \(S\) and a function \(d : S \times S \rightarrow [0, \infty)\) satisfying

1. \(d(x, x) = 0\),
2. \(d(x, y) = d(y, x)\),
3. \(d(x, z) \leq d(x, y) + d(y, z)\).

Examples:

1. Metric spaces like \((\mathbb{R}^d, \| \cdot \|_2)\).
2. A set \(F\) of functions with pseudometric

\[
d(f, g) = \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - g(x_i)|.
\]
Covering numbers

Definition: An \(\epsilon \)-cover of a subset \(T \) of a pseudometric space \((S, d)\) is a set \(\hat{T} \subset T \) such that for each \(t \in T \) there is a \(\hat{t} \in \hat{T} \) such that \(d(t, \hat{t}) \leq \epsilon \). The \(\epsilon \)-covering number of \(T \) is

\[
N(\epsilon, T, d) = \min\{|\hat{T}| : \hat{T} \text{ is an } \epsilon \text{-cover of } T\}.
\]

A set \(T \) is **totally bounded** if, for all \(\epsilon > 0 \), \(N(\epsilon, T, d) < \infty \).

The function \(\epsilon \mapsto \log N(\epsilon, T, d) \) is the **metric entropy** of \(T \).

If \(\lim_{\epsilon \to 0} \log N(\epsilon) / \log(1/\epsilon) \) exists, it is called the **metric dimension**.

[PICTURE]

Intuition: A \(d \)-dimensional set has metric dimension \(d \). \((N(\epsilon) = \Theta(1/\epsilon^d)).\)
Covering numbers

Example: \([0, 1]^d, l_\infty\) has \(N(\epsilon) = \Theta(1/\epsilon^d)\).