Introduction to Time Series Analysis. Lecture 5. Peter Bartlett

www.stat.berkeley.edu/~bartlett/courses/153-fall2010

Last lecture:

- 1. ACF, sample ACF
- 2. Properties of the sample ACF
- 3. Convergence in mean square

Introduction to Time Series Analysis. Lecture 5. Peter Bartlett

www.stat.berkeley.edu/~bartlett/courses/153-fall2010

- 1. AR(1) as a linear process
- 2. Causality
- 3. Invertibility
- 4. AR(p) models
- 5. ARMA(p,q) models

AR(1) as a linear process

Let $\{X_t\}$ be the stationary solution to $X_t - \phi X_{t-1} = W_t$, where $W_t \sim WN(0, \sigma^2).$ If $|\phi| < 1$,

$$X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$$

is the unique solution:

- This infinite sum converges in mean square, since $|\phi| < 1$ implies $\sum |\phi^j| < \infty.$
- It satisfies the AR(1) recurrence.

We can write

$$X_{t} - \phi X_{t-1} = W_{t}$$

$$(1 - \phi B) X_{t} = W_{t}$$

$$\phi(B)$$

$$\phi(B) X_{t} = W_{t}$$

Recall that B is the back-shift operator: $BX_t = X_{t-1}$.

Also, we can write

$$X_{t} = \sum_{j=0}^{\infty} \phi^{j} W_{t-j}$$

$$\Leftrightarrow X_{t} = \sum_{j=0}^{\infty} \phi^{j} B^{j} W_{t}$$

$$\Leftrightarrow X_{t} = \pi(B) W_{t}$$

With these definitions:

$$\pi(B) = \sum_{j=0}^{\infty} \phi^j B^j$$
 and $\phi(B) = 1 - \phi B$,

we can check that $\pi(B) = \phi(B)^{-1}$:

$$\pi(B)\phi(B) = \sum_{j=0}^{\infty} \phi^{j} B^{j} (1 - \phi B) = \sum_{j=0}^{\infty} \phi^{j} B^{j} - \sum_{j=1}^{\infty} \phi^{j} B^{j} = 1.$$

Thus,
$$\phi(B)X_t = W_t$$

$$\Rightarrow \pi(B)\phi(B)X_t = \pi(B)W_t$$

$$\Leftrightarrow X_t = \pi(B)W_t.$$

Notice that manipulating operators like $\phi(B)$, $\pi(B)$ is like manipulating polynomials:

$$\frac{1}{1 - \phi z} = 1 + \phi z + \phi^2 z^2 + \phi^3 z^3 + \cdots,$$

provided $|\phi| < 1$ and $|z| \le 1$.

Introduction to Time Series Analysis. Lecture 5.

- 1. AR(1) as a linear process
- 2. Causality
- 3. Invertibility
- 4. AR(p) models
- 5. ARMA(p,q) models

Let X_t be the stationary solution to

$$X_t - \phi X_{t-1} = W_t,$$

where $W_t \sim WN(0, \sigma^2)$. If $|\phi| < 1$,

$$X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}.$$

$$\phi = 1?$$

$$\phi = -1?$$

$$|\phi| > 1$$
?

If $|\phi| > 1$, $\pi(B)W_t$ does not converge.

But we can rearrange

$$X_t = \phi X_{t-1} + W_t$$
 as
$$X_{t-1} = \frac{1}{\phi} X_t - \frac{1}{\phi} W_t,$$

and we can check that the unique stationary solution is

$$X_t = -\sum_{j=1}^{\infty} \phi^{-j} W_{t+j}.$$

But... X_t depends on **future** values of W_t .

Causality

A linear process $\{X_t\}$ is **causal** (strictly, a **causal function** of $\{W_t\}$) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and
$$X_t = \psi(B)W_t$$
.

- Causality is a property of $\{X_t\}$ and $\{W_t\}$.
- Consider the AR(1) process defined by $\phi(B)X_t = W_t$ (with $\phi(B) = 1 \phi B$):

$$\phi(B)X_t = W_t$$
 is causal

iff
$$|\phi| < 1$$

iff the root z_1 of the polynomial $\phi(z) = 1 - \phi z$ satisfies $|z_1| > 1$.

• Consider the AR(1) process $\phi(B)X_t = W_t$ (with $\phi(B) = 1 - \phi B$): If $|\phi| > 1$, we can define an equivalent causal model,

$$X_t - \phi^{-1} X_{t-1} = \tilde{W}_t,$$

where \tilde{W}_t is a new white noise sequence.

• Is an MA(1) process causal?

Introduction to Time Series Analysis. Lecture 5.

- 1. AR(1) as a linear process
- 2. Causality
- 3. Invertibility
- 4. AR(p) models
- 5. ARMA(p,q) models

MA(1) and Invertibility

Define

$$X_t = W_t + \theta W_{t-1}$$
$$= (1 + \theta B)W_t.$$

If $|\theta| < 1$, we can write

$$(1 + \theta B)^{-1} X_t = W_t$$

$$\Leftrightarrow (1 - \theta B + \theta^2 B^2 - \theta^3 B^3 + \cdots) X_t = W_t$$

$$\Leftrightarrow \sum_{j=0}^{\infty} (-\theta)^j X_{t-j} = W_t.$$

That is, we can write W_t as a *causal* function of X_t .

We say that this MA(1) is **invertible**.

MA(1) and Invertibility

$$X_t = W_t + \theta W_{t-1}$$

If $|\theta| > 1$, the sum $\sum_{j=0}^{\infty} (-\theta)^j X_{t-j}$ diverges, but we can write

$$W_{t-1} = -\theta^{-1}W_t + \theta^{-1}X_t.$$

Just like the noncausal AR(1), we can show that

$$W_t = -\sum_{j=1}^{\infty} (-\theta)^{-j} X_{t+j}.$$

That is, we can write W_t as a linear function of X_t , but it is not causal. We say that this MA(1) is not **invertible**.

Invertibility

A linear process $\{X_t\}$ is **invertible** (strictly, an **invertible** function of $\{W_t\}$) if there is a

$$\pi(B) = \pi_0 + \pi_1 B + \pi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$

and
$$W_t = \pi(B)X_t$$
.

MA(1) and Invertibility

- Invertibility is a property of $\{X_t\}$ and $\{W_t\}$.
- Consider the MA(1) process defined by $X_t = \theta(B)W_t$ (with $\theta(B) = 1 + \theta B$):

$$X_t = \theta(B)W_t$$
 is invertible

iff
$$|\theta| < 1$$

iff the root z_1 of the polynomial $\theta(z) = 1 + \theta z$ satisfies $|z_1| > 1$.

MA(1) and Invertibility

- Consider the MA(1) process $X_t = \theta(B)W_t$ (with $\theta(B) = 1 + \theta B$): If $|\theta| > 1$, we can define an equivalent invertible model in terms of a new white noise sequence.
- Is an AR(1) process invertible?

Introduction to Time Series Analysis. Lecture 5.

- 1. AR(1) as a linear process
- 2. Causality
- 3. Invertibility
- 4. AR(p) models
- 5. ARMA(p,q) models

AR(p): Autoregressive models of order p

An AR(p) process $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t,$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Equivalently,
$$\phi(B)X_t = W_t$$
,
where $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$.

AR(p): Constraints on ϕ

Recall: For p = 1 (AR(1)), $\phi(B) = 1 - \phi_1 B$.

This is an AR(1) model only if there is a *stationary* solution to $\phi(B)X_t = W_t$, which is equivalent to $|\phi_1| \neq 1$.

This is equivalent to the following condition on $\phi(z) = 1 - \phi_1 z$:

$$\forall z \in \mathbb{R}, \ \phi(z) = 0 \implies z \neq \pm 1$$

equivalently, $\forall z \in \mathbb{C}, \ \phi(z) = 0 \ \Rightarrow \ |z| \neq 1$,

where \mathbb{C} is the set of complex numbers.

AR(p): Constraints on ϕ

Stationarity: $\forall z \in \mathbb{C}, \ \phi(z) = 0 \implies |z| \neq 1,$

where \mathbb{C} is the set of complex numbers.

 $\phi(z) = 1 - \phi_1 z$ has one root at $z_1 = 1/\phi_1 \in \mathbb{R}$.

But the roots of a degree p > 1 polynomial might be complex.

For stationarity, we want the roots of $\phi(z)$ to avoid the **unit circle**,

$$\{z \in \mathbb{C} : |z| = 1\}.$$

AR(p): Stationarity and causality

Theorem: A (unique) *stationary* solution to $\phi(B)X_t = W_t$ exists iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| \neq 1.$$

This AR(p) process is causal iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| > 1.$$

Recall: Causality

A linear process $\{X_t\}$ is **causal** (strictly, a **causal function** of $\{W_t\}$) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and
$$X_t = \psi(B)W_t$$
.

AR(p): Roots outside the unit circle implies causal (Details)

$$\forall z \in \mathbb{C}, |z| \leq 1 \Rightarrow \phi(z) \neq 0$$

$$\Leftrightarrow \exists \{\psi_j\}, \delta > 0, \forall |z| \leq 1 + \delta, \frac{1}{\phi(z)} = \sum_{j=0}^{\infty} \psi_j z^j.$$

$$\Rightarrow \forall |z| \leq 1 + \delta, |\psi_j z^j| \to 0, \left(|\psi_j|^{1/j} |z|\right)^j \to 0$$

$$\Rightarrow \exists j_0, \forall j \geq j_0, |\psi_j|^{1/j} \leq \frac{1}{1 + \delta/2} \Rightarrow \sum_{j=0}^{\infty} |\psi_j| < \infty.$$

So if $|z| \le 1 \Rightarrow \phi(z) \ne 0$, then $S_m = \sum_{j=0}^m \psi_j B^j W_t$ converges in mean square, so we have a stationary, causal time series $X_t = \phi^{-1}(B)W_t$.

Calculating ψ for an AR(p): matching coefficients

Example:
$$X_t = \psi(B)W_t \Leftrightarrow (1 - 0.5B + 0.6B^2)X_t = W_t,$$

so $1 = \psi(B)(1 - 0.5B + 0.6B^2)$
 $\Leftrightarrow 1 = (\psi_0 + \psi_1 B + \psi_2 B^2 + \cdots)(1 - 0.5B + 0.6B^2)$
 $\Leftrightarrow 1 = \psi_0,$
 $0 = \psi_1 - 0.5\psi_0,$
 $0 = \psi_2 - 0.5\psi_1 + 0.6\psi_0,$
 $0 = \psi_3 - 0.5\psi_2 + 0.6\psi_1,$
:

Calculating ψ for an AR(p): example

$$\Leftrightarrow 1 = \psi_0, \quad 0 = \psi_j \quad (j \le 0),$$

$$0 = \psi_j - 0.5\psi_{j-1} + 0.6\psi_{j-2}$$

$$\Leftrightarrow 1 = \psi_0, \quad 0 = \psi_j \quad (j \le 0),$$

$$0 = \phi(B)\psi_j.$$

We can solve these *linear difference equations* in several ways:

- numerically, or
- by guessing the form of a solution and using an inductive proof, or
- by using the theory of linear difference equations.

Calculating ψ for an AR(p): general case

$$\phi(B)X_t = W_t, \qquad \Leftrightarrow \qquad X_t = \psi(B)W_t$$
so
$$1 = \psi(B)\phi(B)$$

$$\Leftrightarrow \qquad 1 = (\psi_0 + \psi_1 B + \cdots)(1 - \phi_1 B - \cdots - \phi_p B^p)$$

$$\Leftrightarrow \qquad 1 = \psi_0,$$

$$0 = \psi_1 - \phi_1 \psi_0,$$

$$0 = \psi_2 - \phi_1 \psi_1 - \phi_2 \psi_0,$$

$$\vdots$$

$$\Leftrightarrow \qquad 1 = \psi_0, \qquad 0 = \psi_j \qquad (j < 0),$$

$$0 = \phi(B)\psi_j.$$

Introduction to Time Series Analysis. Lecture 5.

- 1. AR(1) as a linear process
- 2. Causality
- 3. Invertibility
- 4. AR(p) models
- 5. ARMA(p,q) models

ARMA(p,q): Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q},$$
where $\{W_t\} \sim WN(0, \sigma^2).$

- AR(p) = ARMA(p,0): $\theta(B) = 1$.
- MA(q) = ARMA(0,q): $\phi(B) = 1$.

ARMA processes

Can accurately approximate many stationary processes:

For any stationary process with autocovariance γ , and any k > 0, there is an ARMA process $\{X_t\}$ for which

$$\gamma_X(h) = \gamma(h), \qquad h = 0, 1, \dots, k.$$

ARMA(p,q): Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q},$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Usually, we insist that $\phi_p, \theta_q \neq 0$ and that the polynomials

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p, \qquad \theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q$$

have no common factors. This implies it is not a lower order ARMA model.