Introduction to Time Series Analysis. Lecture 23.

. Lagged regression models.
. Cross-covariance function, sample CCF.
. Lagged regression in the time domain: prewhitening.

. Lagged regression in the frequency domain: Cross spactru
Coherence.




‘Lagged regression models'

Consider a lagged regression model of the form

Vo= > BuXen+ Vi,

h=—oc0

whereX; Is an observed input time serids, is the observed output time
series, and/; Is a stationary noise process.

This is useful for

o ldentifying the (best linear) relationship between twodiseries.

e Forecasting one time series from the other.
(We might want3;,, = 0 for h < 0.)




‘Lagged regression models'

Yi= Y BuXion+ Vi

h=—o0

In the SOI and recruitment example, we might wish to iderttidyv the
values of the recruitment series (the number of new fish)lzded to the

Southern Oscillation Index.
Or we might wish to predict future values of recruitment frame SOI.




L agged regression models: Agenda'

Multiple, jointly stationary time series in the time domain
cross-covariance function, sample CCF.

Lagged regression in the time domain: model the input sesdsact
the white time series driving it (‘prewhitening’), regresgh
transformed output series.

Multiple, jointly stationary time series in the frequenaoyrdain:
Cross spectrum, coherence.

Lagged regression in the frequency domain: Calculate et
spectral density, and the cross-spectral density betwgen and
output, and find the transfer function relating them, in tfegjiency
domain. Then the regression coefficients are the inversadfou
transform of the transfer function.
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Cross-covariance I

Recall that the autocovariance function of a stationargese{ X, } is

’Y:c(h) = E [(XH—h - ,uac)(Xt - :u:c)] -

The cross-covariance function of two jointly stationary processgsX;} and
{Yi}is

Yoy (h) = B [(Xewn — pa) (Ve — p1y)] -

(Jointly stationary= constant means, autocovariances depending only o
the lagh, and cross-covariance depends onlyhon




Cross-correlation '

The cross-correlation function of jointly stationary{ X, } and{Y;} is

'ny(h)

pry(h) =

- V07%0)
Notice thatp,, (h) = pyz(—h) (BUt pyy(h) Z pay(—h)).

Example: Suppose that; = gX;_, + W, for { X;} stationary and
uncorrelated wit W, }, andW; zero mean and white. ThenX;} and{Y;}
are jointly stationary, withs,, = 5.,

’V:By(h) — B’V:B(h + 6)

If ¢ > 0, we sayz; leads y;.
If ¢ < 0, we sayzr; lags y;.




‘ Sample cross-covariance and sample CCF I

1 n—~h

’S/xy(h) = " Z($t+h —Z)(y: — U)

1=1
for h > 0 (and¥,, (h) = 4y (—h) for h < 0).
The sample CCF is

AW
Peul) = R 0)




‘ Sample cross-covariance and sample CCF I

If either of { X, } or {Y;} is white, thenp,, (h) ~ AN(0,1/y/n).
Notice that we can look for peaks in the sample CCF to idemtiigading or

lagging relation. (Recall that the ACF of the input serieakseath = 0.)

Example: CCF of SOI and recruitment (Figure 1.14 in text) hasak at
h = —6, indicating that recruitment a@thas its strongest correlation with
SOl at timet — 6. Thus, SOI leads recruitment (by 6 months).
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L agged regression in the time domain (Section 5.6)'

Suppose we wish to fit a lagged regression model of the form

oo

Yi=a(B)X;+n = ZOéth—j + Mt

7=0

whereX; Is an observed input time serids, is the observed output time
series, and, Is a stationary noise process, uncorrelated \With

One approach (pioneered by Box and Jenkins) is to fit ARIMA etefbr
X andn,, and then find a simple rational representationdoB).
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‘ L agged regression in thetime domain'

For example:

Notice the delay3¢, indicating thatY; lags X, by d steps.
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‘ L agged regression in thetime domain'

How do we choose all of these parameters?

1. Fit,(B), ¢.(B) to model the input seriegX, }.

2. Prewhiten the input series by applying the inverse operator

¢2(B)/02(B):

¢ (B)

Y: = a(B)W; + 0. (B) ny
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‘ L agged regression in thetime domain'

3. Calculate the cross-correlation Bf with 1,

to give an indication of the behavior ef B) (for instance, the delay).

4. Estimate the coefficients of( B) and hence fit an ARMA model for
the noise series;.
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‘ L agged regression in thetime domain'

Why prewhiten?

The prewhitening step inverts the linear filt&¢ = 6.(B) /¢, (B)W;. Then
the lagged regression is between the transforijeahd a white seried/;.
This makes it easy to determine a suitable lag.

For example, in the SOl/recruitment series, we treat SOhasfaut,
estimate an AR(1) model, prewhiten it (that is, compute tiverse of our
AR(1) operator and apply it to the SOI series), and consiuer t
cross-correlation between the transformed recruitmeamsand the
prewhitened SOI. This shows a large peak at lag -5 (correfipgrio the
SOl series leading the recruitment series). Examples 5'/a8in the text
then consider(B) = B° /(1 — w1 B).
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‘ L agged regression in thetime domain'

This sequential estimation procedutg, (0., thenca, theng,,, 0,)) is rather
ad hoc. State space methods offer an alternative, and tbalsr
convenient for vector-valued input and output series.
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\ Coherence'

To analyze lagged regression in the frequency domain, weéd the notion
of coherence, the analog of cross-correlation in the frequency domain.

Define thecross-spectrum as the Fourier transform of the cross-correlation

fazy(y): Z ,ny(h)e—%riuhj

h=—o0

1/2 |
oy () = / Foy (1),
—1/2

(provided thad "7~ |y.y(h)] < 00).
Notice thatf,, () can be complex-valued.

AISO, 7y (h) = Yy (—h) IMplies fyo (1) = fuy (1),
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\ Coherence.

The sguared coherence function is

2 o @)
Poa) = 5 ) f )

Compare this with the correlation, , = Cov(Y, X))/, /oZo2. We can

think of the squared coherence at a frequen@s the contribution to
squared correlation at that frequency.

(Recall the interpretation of spectral density at a freqyenas the
contribution to variance at that frequency.)
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Estimating squared coherence.

Recall that we estimated the spectral density using the sradsquared
modulus of the DFT of the series,

A MU

f)=7 X IX i)

I=—(L—1)/2
(L—1)/2

> X — U)X (v — 1/n)".

[=—(L—1)/2

We can estimate the cross spectral density using the sanpesastimate,

) ()2
foyi) == Y X —1/n)Y (v, —1/n)".

[=—(L—1)/2
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\ Coherence.

Also, we can estimate the squared coherence using theseget|

A

e )
fo )y ()

Pya(V) =

(Knowledge of the asymptotic distribution pf . () under the hypothesis of no
coherencep, () = 0, allows us to test for coherence.)
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‘ L agged regression modelsin the frequency domain I

Consider a lagged regression model of the form

Yi= > BiXe;j+ W

j=—00

whereX; is an observed input time serigs, is the observed output time
series, and/; is a stationary noise process.

We'd like to estimate the coefficients that determine the relationship
between the lagged values of the input seAgsand the output seriey;.
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‘ L agged regression modelsin the frequency domain I

The projection theorem tells us that the coefficients thatimize the mean
squared error,

2
E||Y:— 2: B Xi—;

j=—00

satisfy the orthogonality conditions

E||Yi— ) BiXi ;| Xen| =0, k=0,+1,+2, ...

j=—0c

j=—00
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‘ L agged regression modelsin the frequency domain I

We could solve these equations for theusing the sample autocovariance
and sample cross-covariance. But it is more convenientéeasmates of
the spectra and cross-spectrum.

(Convolution with{ 3, } in the time domain is equivalent to multiplication
by the Fourier transform of 3, } in the frequency domain. Let’s verify this.)

We replace the autocovariance and cross-covariance vatimlerse

Fourier transforms of the spectral density and cross-splei®nsity in the
orthogonality conditions,

j=—00
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‘ L agged regression modelsin the frequency domain I

This gives, fork = 0, +1, +£2, .. .,

1/2 o0 1/2

> B e = [ g ),

-1/2 ;2 —1/2

1/2 . 1/2 .
/ BQWZVkB(I/)fx(I/)dV _ / 627mykfya:(V),

—1/2 —1/2

whereB(v) = > 77 _ e~ ?™" 3; is the Fourier transform of the
coefficient sequence;.
Since the Fourier transform is unique, the orthogonalityditbons are

equivalent to

Bw)fe(v) = fyz(v).
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‘ L agged regression modelsin the frequency domain I

We can write the mean squared error at the solution as follgWay?)

E (Yt — Z ﬁthg) Yi| =7(0) — Z BiVay(—7)

j=—o00 j=—00

1/2
_ / (3 () — B) fy(v)) d

—1/2

/ 11//22 £, () (

o (

—1/2

/1/2
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‘ L agged regression modelsin the frequency domain I

1/2
MSE = / fy(v) (1 — pix(y)) dv.

—1/2

Thus,p,.(v)? indicates how the component of the variance Bf} at a
frequencyv is accounted for by X, }. Compare this with the corresponding
decomposition for random variables:

E(y — 2)? = 02(1— p2,).
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‘ L agged regression modelsin the frequency domain I

We can estimate thé; in the frequency domain:

1§(Vk):: f? <Vk).

fe(Vg)

We can approximate the inverse Fourier transforniof),
. vz
B; :/ e*™I B(v)dy

—1/2

via the sum,

1 M-—1
b= g 3 BT

This gives a periodic sequence—we might truncatg-atiM /2.
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‘ L agged regression modelsin the frequency domain I

Here is the approach:

1. Estimate the spectral density and cross-spectral gensit

2. Compute the transfer functidsi(v).

3. Take the inverse Fourier transform to obtain the imputsponse
function 3;.
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‘ L agged regression modelsin the frequency domain I

It is often useful to consider both representations

Y: = Z aj Xi—j, X = Z B;Yi—j,

J=—00C J]J=—

since there might be a more parsimonious representatiarnmstof one
than the other. (Just as a small AR model often cannot be well

approximated by a small MA model.)
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‘ L agged regression modelsin the frequency domain I

In the X; =SOI/Y; =Recruitment example (Example 4.23), we obtain

Yy = 22X 5 — 15X — 11Xy 7 — 10X4_g — 7 X4_g — - - - + Wy,
Xt — 00121/t+4 - 00181/;54_5 + ‘/;5,

and the latter is equivalent to

(1 -0.667B)Y; = —56B°X, + Uy,.
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