
Introduction to Time Series Analysis. Lecture 23.

1. Lagged regression models.

2. Cross-covariance function, sample CCF.

3. Lagged regression in the time domain: prewhitening.

4. Lagged regression in the frequency domain: Cross spectrum.

Coherence.
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Lagged regression models

Consider a lagged regression model of the form

Yt =
∞
∑

h=−∞

βhXt−h + Vt,

whereXt is an observed input time series,Yt is the observed output time

series, andVt is a stationary noise process.

This is useful for

• Identifying the (best linear) relationship between two time series.

• Forecasting one time series from the other.

(We might wantβh = 0 for h < 0.)

2



Lagged regression models

Yt =
∞
∑

h=−∞

βhXt−h + Vt.

In the SOI and recruitment example, we might wish to identifyhow the

values of the recruitment series (the number of new fish) is related to the

Southern Oscillation Index.

Or we might wish to predict future values of recruitment fromthe SOI.
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Lagged regression models: Agenda

• Multiple, jointly stationary time series in the time domain:
cross-covariance function, sample CCF.

• Lagged regression in the time domain: model the input series, extract
the white time series driving it (‘prewhitening’), regresswith
transformed output series.

• Multiple, jointly stationary time series in the frequency domain:
cross spectrum, coherence.

• Lagged regression in the frequency domain: Calculate the input’s
spectral density, and the cross-spectral density between input and
output, and find the transfer function relating them, in the frequency
domain. Then the regression coefficients are the inverse Fourier
transform of the transfer function.
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Cross-covariance

Recall that the autocovariance function of a stationary process{Xt} is

γx(h) = E [(Xt+h − µx)(Xt − µx)] .

Thecross-covariance function of two jointly stationary processes{Xt} and

{Yt} is

γxy(h) = E [(Xt+h − µx)(Yt − µy)] .

(Jointly stationary= constant means, autocovariances depending only on

the lagh, and cross-covariance depends only onh.)
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Cross-correlation

Thecross-correlation function of jointly stationary{Xt} and{Yt} is

ρxy(h) =
γxy(h)

√

γx(0)γy(0)
.

Notice thatρxy(h) = ρyx(−h) (butρxy(h) 6≡ ρxy(−h)).

Example: Suppose thatYt = βXt−ℓ + Wt for {Xt} stationary and

uncorrelated with{Wt}, andWt zero mean and white. Then{Xt} and{Yt}
are jointly stationary, withµy = βµx,

γxy(h) = βγx(h + ℓ).

If ℓ > 0, we sayxt leads yt.

If ℓ < 0, we sayxt lags yt.
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Sample cross-covariance and sample CCF

γ̂xy(h) =
1

n

n−h
∑

i=1

(xt+h − x̄)(yt − ȳ)

for h ≥ 0 (andγ̂xy(h) = γ̂yx(−h) for h < 0).

The sample CCF is

ρ̂xy(h) =
γ̂xy(h)

√

γ̂x(0)γ̂y(0)
.
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Sample cross-covariance and sample CCF

If either of{Xt} or {Yt} is white, thenρ̂xy(h) ∼ AN(0, 1/
√

n).

Notice that we can look for peaks in the sample CCF to identifya leading or

lagging relation. (Recall that the ACF of the input series peaks ath = 0.)

Example: CCF of SOI and recruitment (Figure 1.14 in text) hasa peak at

h = −6, indicating that recruitment att has its strongest correlation with

SOI at timet − 6. Thus, SOI leads recruitment (by 6 months).
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Lagged regression in the time domain (Section 5.6)

Suppose we wish to fit a lagged regression model of the form

Yt = α(B)Xt + ηt =
∞
∑

j=0

αjXt−j + ηt,

whereXt is an observed input time series,Yt is the observed output time

series, andηt is a stationary noise process, uncorrelated withXt.

One approach (pioneered by Box and Jenkins) is to fit ARIMA models for

Xt andηt, and then find a simple rational representation forα(B).
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Lagged regression in the time domain

Yt = α(B)Xt + ηt =

∞
∑

j=0

αjXt−j + ηt,

For example:

Xt =
θx(B)

φx(B)
Wt,

ηt =
θη(B)

φη(B)
Zt,

α(B) =
δ(B)

ω(B)
Bd.

Notice the delayBd, indicating thatYt lagsXt by d steps.
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Lagged regression in the time domain

How do we choose all of these parameters?

1. Fit θx(B), φx(B) to model the input series{Xt}.

2. Prewhiten the input series by applying the inverse operator

φx(B)/θx(B):

Ỹt =
φx(B)

θx(B)
Yt = α(B)Wt +

φx(B)

θx(B)
ηt.
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Lagged regression in the time domain

3. Calculate the cross-correlation ofỸt with Wt,

γỹ,w(h) = E





∞
∑

j=0

αjWt+h−jWt



 = σ2
wαh,

to give an indication of the behavior ofα(B) (for instance, the delay).

4. Estimate the coefficients ofα(B) and hence fit an ARMA model for

the noise seriesηt.
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Lagged regression in the time domain

Why prewhiten?

The prewhitening step inverts the linear filterXt = θx(B)/φx(B)Wt. Then

the lagged regression is between the transformedYt and a white seriesWt.

This makes it easy to determine a suitable lag.

For example, in the SOI/recruitment series, we treat SOI as an input,

estimate an AR(1) model, prewhiten it (that is, compute the inverse of our

AR(1) operator and apply it to the SOI series), and consider the

cross-correlation between the transformed recruitment series and the

prewhitened SOI. This shows a large peak at lag -5 (corresponding to the

SOI series leading the recruitment series). Examples 5.7 and 5.8 in the text

then considerα(B) = B5/(1 − ω1B).
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Lagged regression in the time domain

This sequential estimation procedure (φx, θx, thenα, thenφη, θη) is rather

ad hoc. State space methods offer an alternative, and they are also

convenient for vector-valued input and output series.
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Coherence

To analyze lagged regression in the frequency domain, we’llneed the notion

of coherence, the analog of cross-correlation in the frequency domain.

Define thecross-spectrum as the Fourier transform of the cross-correlation,

fxy(ν) =
∞
∑

h=−∞

γxy(h)e−2πiνh,

γxy(h) =

∫ 1/2

−1/2

fxy(ν)e2πiνhdν,

(provided that
∑

∞

h=−∞
|γxy(h)| < ∞).

Notice thatfxy(ν) can be complex-valued.

Also, γyx(h) = γxy(−h) impliesfyx(ν) = fxy(ν)∗.

18



Coherence

Thesquared coherence function is

ρ2
y,x(ν) =

|fyx(ν)|2
fx(ν)fy(ν)

.

Compare this with the correlationρy,x = Cov(Y, X)/
√

σ2
xσ2

y. We can

think of the squared coherence at a frequencyν as the contribution to

squared correlation at that frequency.

(Recall the interpretation of spectral density at a frequency ν as the

contribution to variance at that frequency.)
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Estimating squared coherence

Recall that we estimated the spectral density using the smoothed squared
modulus of the DFT of the series,

f̂x(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

|X(νk − l/n)|2

=
1

L

(L−1)/2
∑

l=−(L−1)/2

X(νk − l/n)X(νk − l/n)∗.

We can estimate the cross spectral density using the same sample estimate,

f̂xy(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

X(νk − l/n)Y (νk − l/n)∗.
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Coherence

Also, we can estimate the squared coherence using these estimates,

ρ̂2
y,x(ν) =

|f̂yx(ν)|2

f̂x(ν)f̂y(ν)
.

(Knowledge of the asymptotic distribution ofρ̂
2

y,x(ν) under the hypothesis of no

coherence,ρy,x(ν) = 0, allows us to test for coherence.)
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Lagged regression models in the frequency domain

Consider a lagged regression model of the form

Yt =
∞
∑

j=−∞

βjXt−j + Vt,

whereXt is an observed input time series,Yt is the observed output time

series, andVt is a stationary noise process.

We’d like to estimate the coefficientsβj that determine the relationship

between the lagged values of the input seriesXt and the output seriesYt.
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Lagged regression models in the frequency domain

The projection theorem tells us that the coefficients that minimize the mean

squared error,

E









Yt −
∞
∑

j=−∞

βjXt−j





2






satisfy the orthogonality conditions

E







Yt −
∞
∑

j=−∞

βjXt−j



Xt−k



 = 0, k = 0,±1,±2, . . .

∞
∑

j=−∞

βjγx(k − j) = γyx(k), k = 0,±1,±2, . . .
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Lagged regression models in the frequency domain

We could solve these equations for theβj using the sample autocovariance

and sample cross-covariance. But it is more convenient to use estimates of

the spectra and cross-spectrum.

(Convolution with{βj} in the time domain is equivalent to multiplication

by the Fourier transform of{βj} in the frequency domain. Let’s verify this.)

We replace the autocovariance and cross-covariance with the inverse

Fourier transforms of the spectral density and cross-spectral density in the

orthogonality conditions,

∞
∑

j=−∞

βjγx(k − j) = γyx(k), k = 0,±1,±2, . . .
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Lagged regression models in the frequency domain

This gives, fork = 0,±1,±2, . . .,

∫ 1/2

−1/2

∞
∑

j=−∞

βje
2πiν(k−j)fx(ν)dν =

∫ 1/2

−1/2

e2πiνkfyx(ν),

∫ 1/2

−1/2

e2πiνkB(ν)fx(ν)dν =

∫ 1/2

−1/2

e2πiνkfyx(ν),

whereB(ν) =
∑

∞

j=−∞
e−2πiνjβj is the Fourier transform of the

coefficient sequenceβj .

Since the Fourier transform is unique, the orthogonality conditions are

equivalent to

B(ν)fx(ν) = fyx(ν).
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Lagged regression models in the frequency domain

We can write the mean squared error at the solution as follows. (Why?)

E







Yt −
∞
∑

j=−∞

βjXt−j



 Yt



 = γy(0) −
∞
∑

j=−∞

βjγxy(−j)

=

∫ 1/2

−1/2

(fy(ν) − B(ν)fxy(ν)) dν

=

∫ 1/2

−1/2

fy(ν)

(

1 − fyx(ν)fxy(ν)

fx(ν)fy(ν)

)

dν

=

∫ 1/2

−1/2

fy(ν)

(

1 − |fyx(ν)|2
fx(ν)fy(ν)

)

dν

=

∫ 1/2

−1/2

fy(ν)
(

1 − ρ2
yx(ν)

)

dν.
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Lagged regression models in the frequency domain

MSE =

∫ 1/2

−1/2

fy(ν)
(

1 − ρ2
yx(ν)

)

dν.

Thus,ρyx(ν)2 indicates how the component of the variance of{Yt} at a

frequencyν is accounted for by{Xt}. Compare this with the corresponding

decomposition for random variables:

E(y − βx)2 = σ2
y(1 − ρ2

xy).
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Lagged regression models in the frequency domain

We can estimate theβj in the frequency domain:

B̂(νk) =
f̂yx(νk)

f̂x(νk)
.

We can approximate the inverse Fourier transform ofB̂(ν),

β̂j =

∫ 1/2

−1/2

e2πiνjB̂(ν)dν

via the sum,

β̂j =
1

M

M−1
∑

k=0

B̂(νk)e2πiνkj .

This gives a periodic sequence—we might truncate atj = M/2.
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Lagged regression models in the frequency domain

Here is the approach:

1. Estimate the spectral density and cross-spectral density.

2. Compute the transfer function̂B(ν).

3. Take the inverse Fourier transform to obtain the impulse response

functionβj .
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Lagged regression models in the frequency domain

It is often useful to consider both representations

Yt =

∞
∑

j=−∞

αjXt−j , Xt =

∞
∑

j=−∞

βjYt−j ,

since there might be a more parsimonious representation in terms of one

than the other. (Just as a small AR model often cannot be well

approximated by a small MA model.)
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Lagged regression models in the frequency domain

In theXt =SOI/Yt =Recruitment example (Example 4.23), we obtain

Yt = −22Xt−5 − 15Xt−6 − 11Xt−7 − 10Xt−8 − 7Xt−9 − · · · + Wt,

Xt = 0.012Yt+4 − 0.018Yt+5 + Vt,

and the latter is equivalent to

(1 − 0.667B)Yt = −56B5Xt + Ut.
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