Introduction to Time Series Analysis. Lecture 2.

Peter Bartlett

Last lecture:

1. Objectives of time series analysis.
2. Time series models.
Introduction to Time Series Analysis. Lecture 2.
Peter Bartlett

1. Stationarity
2. Autocovariance, autocorrelation
3. MA, AR, linear processes
4. Sample autocorrelation function
Stationarity

\{X_t\} is strictly stationary if
for all \(k, t_1, \ldots, t_k, x_1, \ldots, x_k,\) and \(h,\)

\[P(X_{t_1} \leq x_1, \ldots, X_{t_k} \leq x_k) = P(X_{t_1+h} \leq x_1, \ldots, X_{t_k+h} \leq x_k) \]

i.e., shifting the time axis does not affect the distribution.

We shall consider second-order properties only.
Suppose that \(\{X_t\} \) is a time series with \(\mathbb{E}[X_t^2] < \infty \).

Its \textbf{mean function} is

\[
\mu_t = \mathbb{E}[X_t].
\]

Its \textbf{autocovariance function} is

\[
\gamma_X(s, t) = \text{Cov}(X_s, X_t) \\
= \mathbb{E}[(X_s - \mu_s)(X_t - \mu_t)].
\]
Weak Stationarity

We say that \(\{X_t\} \) is (weakly) stationary if

1. \(\mu_t \) is independent of \(t \), and
2. For each \(h \), \(\gamma_X(t + h, t) \) is independent of \(t \).

In that case, we write

\[\gamma_X(h) = \gamma_X(h, 0). \]
The autocorrelation function (ACF) of \(\{X_t\} \) is defined as

\[
\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \frac{\text{Cov}(X_{t+h}, X_t)}{\text{Cov}(X_t, X_t)} = \text{Corr}(X_{t+h}, X_t).
\]
Stationarity

Example: i.i.d. noise, $\mathbb{E}[X_t] = 0$, $\mathbb{E}[X_t^2] = \sigma^2$. We have

$$
\gamma_X(t + h, t) = \begin{cases}
\sigma^2 & \text{if } h = 0, \\
0 & \text{otherwise}.
\end{cases}
$$

Thus,

1. $\mu_t = 0$ is independent of t.
2. $\gamma_X(t + h, t) = \gamma_X(h, 0)$ for all t.

So $\{X_t\}$ is stationary.

Similarly for any white noise (uncorrelated, zero mean), $X_t \sim WN(0, \sigma^2)$.
Stationarity

Example: Random walk, $S_t = \sum_{i=1}^{t} X_i$ for i.i.d., mean zero $\{X_t\}$. We have $E[S_t] = 0$, $E[S_t^2] = t\sigma^2$, and

$$\gamma_S(t + h, t) = \text{Cov}(S_{t+h}, S_t)$$

$$= \text{Cov} \left(S_t + \sum_{s=1}^{h} X_{t+s}, S_t \right)$$

$$= \text{Cov}(S_t, S_t) = t\sigma^2.$$

1. $\mu_t = 0$ is independent of t, but
2. $\gamma_S(t + h, t)$ is not.

So $\{S_t\}$ is not stationary.
An aside: covariances

\[\text{Cov}(X + Y, Z) = \text{Cov}(X, Z) + \text{Cov}(Y, Z), \]
\[\text{Cov}(aX, Y) = a \text{Cov}(X, Y), \]

Also if \(X \) and \(Y \) are independent (e.g., \(X = c \)), then

\[\text{Cov}(X, Y) = 0. \]
Stationarity

Example: MA(1) process (Moving Average):

\[X_t = W_t + \theta W_{t-1}, \quad \{W_t\} \sim WN(0, \sigma^2). \]

We have \(E[X_t] = 0 \), and

\[
\gamma_X(t + h, t) = E(X_{t+h}X_t) \\
= E[(W_{t+h} + \theta W_{t+h-1})(W_t + \theta W_{t-1})] \\
= \begin{cases}
\sigma^2(1 + \theta^2) & \text{if } h = 0, \\
\sigma^2\theta & \text{if } h = \pm1, \\
0 & \text{otherwise.}
\end{cases}
\]

Thus, \(\{X_t\} \) is stationary.
ACF of the MA(1) process

MA(1): $X_t = Z_t + \theta Z_{t-1}$

$\theta/(1+\theta^2)$
Stationarity

Example: AR(1) process (AutoRegressive):

\[X_t = \phi X_{t-1} + W_t, \quad \{W_t\} \sim WN(0, \sigma^2). \]

Assume that \(X_t \) is stationary and \(|\phi| < 1\). Then we have

\[
\begin{align*}
E[X_t] &= \phi E[X_{t-1}] \\
&= 0 \quad \text{(from stationarity)} \\
E[X_t^2] &= \phi^2 E[X_{t-1}^2] + \sigma^2 \\
&= \frac{\sigma^2}{1 - \phi^2} \quad \text{(from stationarity),}
\end{align*}
\]

Stationarity

Example: AR(1) process, \(X_t = \phi X_{t-1} + W_t, \quad \{W_t\} \sim WN(0, \sigma^2) \).

Assume that \(X_t \) is stationary and \(|\phi| < 1\). Then we have

\[
\begin{align*}
E[X_t] &= 0, \quad E[X_t^2] = \frac{\sigma^2}{1 - \phi^2} \\
\gamma_X(h) &= \text{Cov}(\phi X_{t+h-1} + W_{t+h}, X_t) \\
&= \phi \text{Cov}(X_{t+h-1}, X_t) \\
&= \phi \gamma_X(h - 1) \\
&= \phi^{|h|} \gamma_X(0) \quad \text{(check for } h > 0 \text{ and } h < 0) \\
&= \frac{\phi^{|h|} \sigma^2}{1 - \phi^2}.
\end{align*}
\]
ACF of the AR(1) process

AR(1): $X_t = \phi X_{t-1} + Z_t$
Linear Processes

An important class of stationary time series:

\[X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \]

where \(\{W_t\} \sim WN(0, \sigma_w^2) \) and \(\mu, \psi_j \) are parameters satisfying

\[\sum_{j=-\infty}^{\infty} |\psi_j| < \infty. \]
Linear Processes

\[X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \]

We have

\[\mu_X = \mu \]

\[\gamma_X(h) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{h+j}. \] (why?)
Examples of Linear Processes: White noise

\[X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \]

Choose \(\mu \),

\[\psi_j = \begin{cases}
1 & \text{if } j = 0, \\
0 & \text{otherwise.}
\end{cases} \]

Then \(\{X_t\} \sim WN(\mu, \sigma^2_W) \). (why?)
Examples of Linear Processes: MA(1)

\[X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \]

Choose \(\mu = 0 \)

\[\psi_j = \begin{cases} 1 & \text{if } j = 0, \\ \theta & \text{if } j = 1, \\ 0 & \text{otherwise.} \end{cases} \]

Then \(X_t = W_t + \theta W_{t-1} \). (why?)
Examples of Linear Processes: AR(1)

\[X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j} \]

Choose \(\mu = 0 \)

\[\psi_j = \begin{cases}
\phi^j & \text{if } j \geq 0, \\
0 & \text{otherwise.}
\end{cases} \]

Then for \(|\phi| < 1 \), we have \(X_t = \phi X_{t-1} + W_t \).
Recall: Suppose that \(\{X_t\} \) is a stationary time series. Its **mean** is
\[
\mu = \mathbb{E}[X_t].
\]
Its **autocovariance function** is
\[
\gamma(h) = \text{Cov}(X_{t+h}, X_t) = \mathbb{E}[(X_{t+h} - \mu)(X_t - \mu)].
\]
Its **autocorrelation function** is
\[
\rho(h) = \frac{\gamma(h)}{\gamma(0)}.
\]
Estimating the ACF: Sample ACF

For observations x_1, \ldots, x_n of a time series, the **sample mean** is

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t.$$

The **sample autocovariance function** is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}), \quad \text{for } -n < h < n.$$

The **sample autocorrelation function** is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$
Sample autocovariance function:

\[\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}). \]

\[\approx \text{the sample covariance of } (x_1, x_{h+1}), \ldots, (x_{n-h}, x_n) \text{, except that} \]

- we normalize by \(n \) instead of \(n - h \), and
- we subtract the full sample mean.
Introduction to Time Series Analysis. Lecture 2.

1. Stationarity
2. Autocovariance, autocorrelation
3. MA, AR, linear processes
4. Sample autocorrelation function