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Last lecture:
1. Objectives of time series analysis.

2. Time series models.

3. Time series modelling: Chasing stationarity.
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1. Stationarity
2. Autocovariance, autocorrelation

3. MA, AR, linear processes

4. Sample autocorrelation function




‘ Stationarity'

{X:} isstrictly stationary if
forall k,ty,... tg,x1,..., 2z, andh,

P(Xy, <z1,..., Xy, <o) = P(Xpy4n <21, .., Xopgon < 2k)-

l.e., shifting the time axis does not affect the distribatio

We shall considesecond-order propertiesonly.




\ M ean and Autocovariance'

Suppose that X, } is a time series with B ?] < oo.
Its mean function is

e = E[X].

Its autocovariance function is

vx (s,t) = Cov( Xy, Xy)
= B[(Xs — ps) (X — )]




Weak Stationarity'

We say that{ X, } is (weakly) stationary if

1. u 1s independent of, and

2. For eachh, vx (t + h,t) is independent of.

In that case, we write
Yx (h) = vx (h,0).




‘ Stationarity'

Theautocorrelation function (ACF) of { X, } is defined as




‘ Stationarity'

Example: i.i.d. noise, EX;] = 0, E[X?] = 0. We have

o2 ifh=0,

X <t + h7 t) — .
0 otherwise.

Thus,
1. u; = 01s independent of.
2. vx(t+ h,t) = vx(h,0) for all ¢.

So{X,} is stationary.

Similarly for any white noise (uncorrelated, zero meaxy),~ WN (0, o2).




‘ Stationarity'

Example: Random walk,S; = Z,f:l X, fori.i.d., mean zerd X;}.
We have ES;] = 0, E[S?] = to?, and

Ys <t + h, t) = COV(SH_h, St)

h
— Cov (St —+ Z Xt—i—sa St>

s=1

= COV(St, St) = t0'2.
1. u; = 0is independent of, but
2. vs(t + h,t) is not.

So{S;} is not stationary.




\An aside: covariances'

Cov(X +Y,7Z)=Cov(X, Z)+ CouY, Z),
Cov(aX,Y)=aCoVv(X,Y),

Also if X andY are independent (e.gX, = ¢), then

Cov(X,Y) = 0.




Random walk
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‘ Stationarity'

Example: MA(1) process M oving Aver age):
Xt = Wt—i—HWt_l, {Wt} ~/ WN(O,O'Q).
We have EX,| = 0, and

vx(t+h,t) (Xi4nXt)

[(Wt_|_h —|— QWt+h_1)(Wt —|— HWt_l)]

=E
=E

’

o?(1+0%) if h=0,
o20 if h = +1,

0 otherwise.

\

Thus,{ X;} is stationary.
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ACF of the MA(1) process'

MA(1): X =Z +6Z_,

©

® 6/(1+6%)
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‘ Stationarity'

Example: AR(1) processAutoRegressive):

Xt = @Xi—1 + Wh, {Wi} ~ WN(0,0%).

Assume thatX, is stationary andp| < 1. Then we have

E[Xt] — ¢EXt_1
=0 (from stationarity)

E[X}] = ¢°E[X{4] + 0

0.2

-7

(from stationarity)
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‘ Stationarity'

Example: AR(1) processX; = ¢ X;_1 + W4, (W} ~ WN(0,0%).
Assume thatX; is stationary andp| < 1. Then we have

2

-5

E[X;] =0, E[X7]
vx (h) = Cov(pXiap—1 + Wirn, Xt)

— ¢COV(Xt_|_h_1, Xt)

= ¢yx(h —1)

= ¢"lyx(0)  (check forh > 0 andh < 0)

Pl o2

S
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‘ACF of the AR(1) process'

AR(1): X = @X _, +Z,
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Linear Processes.

An important class of stationary time series:

Xt =p+ Z ViWi—;

j=—00
where  {W;} ~ WN(0,0%)

and  u,, are parameters satisfying
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Linear Processes.

oo

We have
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Examples of Linear Processes. White noise'

Xi=p+ Z VWi ;

1 ifj=0,

0 otherwise.

Then{X;} ~ WN(u, o).
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‘ Examples of Linear Processes. MA(1) I

Xt =p+ Z YWy

j=—00

1 ifj=0,
0 if j=1,

0 otherwise.

ThenXt = W+ 0W,;_1.
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Examples of Linear Processes. AR(1) I

oo

Choose =0

7 if >0,
%_{qﬁ if j >

0 otherwise.

Then for|¢| < 1, we haveX; = ¢.X;_1 + W;.
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‘ Estimating the ACF: Sample ACF I

Recall: Suppose that X, } is a stationary time series.
Its mean is

p=E[Xy].

Its autocovariance function is

’y(h) = COV(XH_h, Xt)
= E[(Xeqn — ) (X — )]

Its autocorrelation function is
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‘ Estimating the ACF: Sample ACF I

For observations,, ..., x,, of atime series,

. 1 «
the sample mean is T=—)
n t=1

Thesample autocovariance function is

n—|h|

=3 @ — D) — 7).

t=1

Thesample autocorrelation function is

for—mn < h < n.
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‘ Estimating the ACF: Sample ACF I

Sample autocovariance function:

n—|h|

§0) =~ 3 @ — 2w — 7).

t=1

~ the sample covariance @f1, x,11), ..., (Tn_hn,T,), €XCept that
e We normalize by instead ofn — h, and
e Wwe subtract the full sample mean.
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