Introduction to Time Series Analysis. Lecture 10.
Peter Bartlett

Last lecture:

2. The innovations representation.
Introduction to Time Series Analysis. Lecture 10.

Peter Bartlett

1. Review: Forecasting, the innovations representation.
2. Forecasting h steps ahead.
3. Example: Innovations algorithm for forecasting an MA(1)
4. An aside: Innovations algorithm for forecasting an ARMA(p,q)
5. Linear prediction based on the infinite past
6. The truncated predictor
Review: Forecasting

\[
X^n_{n+1} = \phi_{n1}X_n + \phi_{n2}X_{n-1} + \cdots + \phi_{nn}X_1
\]

\[
\Gamma_n \phi_n = \gamma_n,
\]

\[
P^n_{n+1} = \mathbb{E} \left(X_{n+1} - X^n_{n+1} \right)^2 = \gamma(0) - \gamma' \Gamma_n^{-1} \gamma_n,
\]

\[
\Gamma_n = \begin{bmatrix}
\gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\
\gamma(1) & \gamma(0) & & \\
& \ddots & \ddots & \\
\gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0)
\end{bmatrix},
\]

\[
\phi_n = (\phi_{n1}, \phi_{n2}, \ldots, \phi_{nn})', \quad \gamma_n = (\gamma(1), \gamma(2), \ldots, \gamma(n))'.
\]
The Partial AutoCorrelation Function (PACF) of a stationary time series \(\{X_t\} \) is

\[
\phi_{11} = \text{Corr}(X_1, X_0) = \rho(1)
\]

\[
\phi_{hh} = \text{Corr}(X_h - X_h^{h-1}, X_0 - X_0^{h-1}) \quad \text{for } h = 2, 3, \ldots
\]

This removes the linear effects of \(X_1, \ldots, X_{h-1} \):

\[
\ldots, X_{-1}, \underbrace{X_0, X_1, X_2, \ldots, X_{h-1}}_{\text{partial out}}, X_h, X_{h+1}, \ldots
\]
Review: Partial autocorrelation function

The PACF ϕ_{hh} is also the last coefficient in the best linear prediction of X_{h+1} given X_1, \ldots, X_h:

$$\Gamma_h \phi_h = \gamma_h \quad X^h_{h+1} = \phi'X$$

$$\phi_h = (\phi_{h1}, \phi_{h2}, \ldots, \phi_{hh}).$$

Prediction error variance reduces by a factor $1 - \phi_{nn}^2$:

$$P^n_{n+1} = \gamma(0) - \phi'_n \gamma_n$$

$$= P^{n-1}_n (1 - \phi_{nn}^2).$$
Review: The innovations representation

Instead of writing the best linear predictor as

$$X_{n+1}^n = \phi_{n1}X_n + \phi_{n2}X_{n-1} + \cdots + \phi_{nn}X_1,$$

we can write

$$X_{n+1}^n = \theta_{n1} (X_n - X_{n-1}^{n-1}) + \theta_{n2} (X_{n-1} - X_{n-2}^{n-2}) + \cdots + \theta_{nn} (X_1 - X_0^0).$$

This is still linear in X_1, \ldots, X_n.

The innovations are uncorrelated:

$$\text{Cov}(X_j - X_{j-1}^j, X_i - X_{i-1}^i) = 0 \text{ for } i \neq j.$$
Introduction to Time Series Analysis. Lecture 10.
Peter Bartlett

1. Review: Forecasting, the innovations representation.
2. Forecasting h steps ahead.
3. Example: Innovations algorithm for forecasting an MA(1)
Predicting h steps ahead using innovations

What is the innovations representation for $P(X_{n+h}|X_1,\ldots,X_n)$?

Fact: If $h \geq 1$ and $1 \leq i \leq n$, we have
\[
\text{Cov}(X_{n+h} - P(X_{n+h}|X_1,\ldots,X_{n+h-1}), X_i) = 0.
\]

Thus, $P(X_{n+h} - P(X_{n+h}|X_1,\ldots,X_{n+h-1})|X_1,\ldots,X_n) = 0$.

That is, the best prediction of X_{n+h} is the best prediction of the one-step-ahead forecast of X_{n+h}.

Fact: The best prediction of $X_{n+1} - X_{n+1}^n$ given only X_1,\ldots,X_n is 0.

Similarly for $n + 2,\ldots,n + h - 1$.

Predicting h steps ahead using innovations

$$P(X_{n+h}|X_1, \ldots, X_n) = \sum_{i=1}^{n} \theta_{n+h-1,h-1+i} (X_{n+1-i} - X_{n+1-i}^{n-i})$$
Mean squared error of h-step-ahead forecasts

From orthogonality of the predictors and the error,
\[
E \left((X_{n+h} - P(X_{n+h}|X_1, \ldots, X_n)) P(X_{n+h}|X_1, \ldots, X_n) \right) = 0.
\]

That is, \(E(X_{n+h}P(X_{n+h}|X_1, \ldots, X_n)) = E(P(X_{n+h}|X_1, \ldots, X_n)^2). \)

Hence, we can express the mean squared error as
\[
P_{n+h}^n = E \left(X_{n+h} - P(X_{n+h}|X_1, \ldots, X_n) \right)^2
= \gamma(0) + E \left(P(X_{n+h}|X_1, \ldots, X_n) \right)^2
- 2E \left(X_{n+h}P(X_{n+h}|X_1, \ldots, X_n) \right)
= \gamma(0) - E \left(P(X_{n+h}|X_1, \ldots, X_n) \right)^2.
\]
Mean squared error of h-step-ahead forecasts

But the innovations are uncorrelated, so

$$P_{n+h}^n = \gamma(0) - E\left(P(X_{n+h}|X_1, \ldots, X_n)\right)^2$$

$$= \gamma(0) - E\left(\sum_{j=h}^{n+h-1} \theta_{n+h-1,j} \left(X_{n+h-j} - X_{n+h-j-1}^{n+h-j-1}\right)\right)^2$$

$$= \gamma(0) - \sum_{j=h}^{n+h-1} \theta_{n+h-1,j}^2 \ E\left(X_{n+h-j} - X_{n+h-j}^{n+h-j-1}\right)^2$$

$$= \gamma(0) - \sum_{j=h}^{n+h-1} \theta_{n+h-1,j}^2 \ P_{n+h-j}^{n+h-j-1}.$$
Introduction to Time Series Analysis. Lecture 10.
Peter Bartlett

1. Review: Forecasting, the innovations representation.
2. Forecasting h steps ahead.
3. Example: Innovations algorithm for forecasting an MA(1)
Suppose that we have an MA(1) process \(\{X_t\} \) satisfying

\[
X_t = W_t + \theta_1 W_{t-1}.
\]

Given \(X_1, X_2, \ldots, X_n \), we wish to compute the best linear forecast of \(X_{n+1} \), using the innovations representation,

\[
X_1^0 = 0, \quad X_{n+1}^n = \sum_{i=1}^{n} \theta_{ni} \left(X_{n+1-i} - X_{n+1-i}^{n-i} \right).
\]
An aside: The linear predictions are in the form

\[X_{n+1}^n = \sum_{i=1}^n \theta_{ni} Z_{n+1-i} \]

for uncorrelated, zero mean random variables \(Z_i \). In particular,

\[X_{n+1} = Z_{n+1} + \sum_{i=1}^n \theta_{ni} Z_{n+1-i}, \]

where \(Z_{n+1} = X_{n+1} - X_{n+1}^n \) (and all the \(Z_i \) are uncorrelated). This is suggestive of an MA representation.

Why isn’t it an MA?
Example: Innovations algorithm for forecasting an MA(1)

\[
\theta_{n,n-i} = \frac{1}{P_{i+1}^i} \left(\gamma(n-i) - \sum_{j=0}^{i-1} \theta_{i,j} \gamma(n-j) P_{j+1}^j \right).
\]

\[
P_1^0 = \gamma(0) \quad P_{n+1}^n = \gamma(0) - \sum_{i=0}^{n-1} \theta_{n,n-i}^2 P_{i+1}^i.
\]

The algorithm computes \(P_1^0 = \gamma(0), \theta_{1,1} \) (in terms of \(\gamma(1) \));
\(P_2^1, \theta_{2,2} \) (in terms of \(\gamma(2) \)), \(\theta_{2,1}; P_3^2, \theta_{3,3} \) (in terms of \(\gamma(3) \)), etc.
Example: Innovations algorithm for forecasting an MA(1)

\[
\theta_{n,n-i} = \frac{1}{P_{i+1}^i} \left(\gamma(n-i) - \sum_{j=0}^{i-1} \theta_{i,i-j} \theta_{n,n-j} P_{j+1}^j \right).
\]

For an MA(1), \(\gamma(0) = \sigma^2(1 + \theta_1^2)\), \(\gamma(1) = \theta_1 \sigma^2\).

Thus: \(\theta_{1,1} = \gamma(1)/P_1^0\);
\(\theta_{2,2} = 0, \theta_{2,1} = \gamma(1)/P_2^1\);
\(\theta_{3,3} = \theta_{3,2} = 0; \theta_{3,1} = \gamma(1)/P_3^2\), etc.

Because \(\gamma(n-i) \neq 0\) only for \(i = n-1\), only \(\theta_{n,1} \neq 0\).
Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process \(\{ X_t \} \) satisfying

\[
X_t = W_t + \theta_1 W_{t-1},
\]

the innovations representation of the best linear forecast is

\[
X_1^0 = 0, \quad X_{n+1}^n = \theta_{n1} \left(X_n - X_{n-1}^n \right).
\]

More generally, for an MA(q) process, we have \(\theta_{ni} = 0 \) for \(i > q \).
Example: Innovations algorithm for forecasting an MA(1)

For the MA(1) process \(\{X_t\} \),

\[
X_1^0 = 0, \quad X_{n+1}^n = \theta_{n1} (X_n - X_{n-1}^n).
\]

This is consistent with the observation that

\[
X_{n+1} = Z_{n+1} + \sum_{i=1}^{n} \theta_{ni} Z_{n+1-i},
\]

where the uncorrelated \(Z_i \) are defined by \(Z_t = X_t - X_{t-1}^t \) for \(t = 1, \ldots, n + 1 \).

Indeed, as \(n \) increases, \(P_{n+1}^n \rightarrow \text{Var}(W_t) \) (recall the recursion for \(P_{n+1}^n \)), and \(\theta_{n1} = \gamma(1)/P_{n-1}^n \rightarrow \theta_1 \).
Recall: Forecasting an AR(p)

For the AR(p) process \(\{X_t\} \) satisfying

\[
X_t = \sum_{i=1}^{p} \phi_i X_{t-i} + W_t,
\]

\(X_1^0 = 0, \quad X_{n+1}^n = \sum_{i=1}^{p} \phi_i X_{n+1-i} \)

for \(n \geq p \). Then

\[
X_{n+1} = \sum_{i=1}^{p} \phi_i X_{n+1-i} + Z_{n+1},
\]

where \(Z_{n+1} = X_{n+1} - X_{n+1}^n \).

The Durbin-Levinson algorithm is convenient for AR(p) processes. The innovations algorithm is convenient for MA(q) processes.
Introduction to Time Series Analysis. Lecture 10.

Peter Bartlett

1. Review: Forecasting, the innovations representation.
2. Forecasting h steps ahead.
3. Example: Innovations algorithm for forecasting an MA(1)
4. An aside: Innovations algorithm for forecasting an ARMA(p,q)
5. Linear prediction based on the infinite past
6. The truncated predictor
An aside: Forecasting an ARMA(p,q)

There is a related representation for an ARMA(p,q) process, based on the innovations algorithm. Suppose that \(\{X_t\} \) is an ARMA(p,q) process:

\[
X_t = \sum_{j=1}^{p} \phi_j X_{t-j} + W_t + \sum_{j=1}^{q} \theta_j W_{t-j}.
\]

Consider the transformed process \((C. F. Ansley, Biometrika 66: 59–65, 1979)\)

\[
Z_t = \begin{cases}
X_t/\sigma & \text{if } t = 1, \ldots, p, \\
\phi(B)X_t/\sigma & \text{if } t > p.
\end{cases}
\]

If \(p > 0 \), this is not stationary. However, there is a more general version of the innovations algorithm, which is applicable to nonstationary processes.
An aside: Forecasting an ARMA(p,q)

Let $\theta_{n,j}$ be the coefficients obtained from the application of the innovations algorithm to this process Z_t. This gives the representation

$$X_{n+1}^n = \begin{cases} \sum_{j=1}^{n} \theta_{n,j} \left(X_{n+1-j} - X_{n+1-j}^{n-j} \right) & n < p, \\ \sum_{j=1}^{p} \phi_{j} X_{n+1-j} + \sum_{j=1}^{q} \theta_{n,j} \left(X_{n+1-j} - X_{n+1-j}^{n-j} \right) & n \geq p \end{cases}$$

For a causal, invertible $\{X_t\}$:

$$E(X_n - X_{n-1} - W_n)^2 \to 0, \theta_{n,j} \to \theta_j,$$ and $P_{n+1}^n \to \sigma^2$.

Notice that this illustrates one way to simulate an ARMA(p,q) process exactly.

Why?
Introduction to Time Series Analysis. Lecture 10.

Peter Bartlett

1. Review: Forecasting, the innovations representation.

2. Forecasting \(h \) steps ahead.

3. Example: Innovations algorithm for forecasting an MA(1)

4. An aside: Innovations algorithm for forecasting an ARMA(p,q)

5. Linear prediction based on the infinite past

6. The truncated predictor
Linear prediction based on the infinite past

So far, we have considered linear predictors based on n observed values of the time series:

$$X_{n+m}^n = P(X_{n+m}|X_n, X_{n-1}, \ldots, X_1).$$

What if we have access to all previous values, $X_n, X_{n-1}, X_{n-2}, \ldots$?

Write

$$\tilde{X}_{n+m} = P(X_{n+m}|X_n, X_{n-1}, \ldots)$$

$$= \sum_{i=1}^{\infty} \alpha_i X_{n+1-i}.$$
Linear prediction based on the infinite past

\[\tilde{X}_{n+m} = P(X_{n+m}|X_n, X_{n-1}, \ldots) = \sum_{i=1}^{\infty} \alpha_i X_{n+1-i}. \]

The orthogonality property of the optimal linear predictor implies

\[E \left[(\tilde{X}_{n+m} - X_{n+m})X_{n+1-i} \right] = 0, \quad i = 1, 2, \ldots \]

Thus, if \{X_t\} is a zero-mean stationary time series, we have

\[\sum_{j=1}^{\infty} \alpha_j \gamma(i-j) = \gamma(m - 1 + i), \quad i = 1, 2, \ldots \]
Linear prediction based on the infinite past

If \(\{X_t\} \) is a causal, invertible, linear process, we can write

\[
X_{n+m} = \sum_{j=1}^{\infty} \psi_j W_{n+m-j} + W_{n+m}, \quad W_{n+m} = \sum_{j=1}^{\infty} \pi_j X_{n+m-j} + X_{n+m}.
\]

In this case,

\[
\hat{X}_{n+m} = P(X_{n+m} | X_n, X_{n-1}, \ldots)
\]

\[
= P(W_{n+m} | X_n, \ldots) - \sum_{j=1}^{\infty} \pi_j P(X_{n+m-j} | X_n, \ldots)
\]

\[
= - \sum_{j=1}^{m-1} \pi_j P(X_{n+m-j} | X_n, \ldots) - \sum_{j=m}^{\infty} \pi_j X_{n+m-j}.
\]
Linear prediction based on the infinite past

\[
\tilde{X}_{n+m} = - \sum_{j=1}^{m-1} \pi_j P(X_{n+m-j}|X_n, \ldots) - \sum_{j=m}^{\infty} \pi_j X_{n+m-j}.
\]

That is,

\[
\tilde{X}_{n+1} = - \sum_{j=1}^{\infty} \pi_j X_{n+1-j},
\]

\[
\tilde{X}_{n+2} = -\pi_1 \tilde{X}_{n+1} - \sum_{j=2}^{\infty} \pi_j X_{n+2-j},
\]

\[
\tilde{X}_{n+3} = -\pi_1 \tilde{X}_{n+2} - \pi_2 \tilde{X}_{n+1} - \sum_{j=3}^{\infty} \pi_j X_{n+3-j}.
\]

The invertible (AR(\infty)) representation gives the forecasts \(\tilde{X}_{n+m}\).
To compute the mean squared error, we notice that

\[
\tilde{X}_{n+m} = P(X_{n+m}|X_n, X_{n-1}, \ldots) = \sum_{j=1}^{\infty} \psi_j P(W_{n+m-j}|X_n, X_{n-1}, \ldots)
\]

\[+ P(W_{n+m}|X_n, X_{n-1}, \ldots)\]

\[= \sum_{j=m}^{\infty} \psi_j W_{n+m-j}.\]

\[
E (X_{n+m} - P(X_{n+m}|X_n, X_{n-1}, \ldots))^2 = E \left(\sum_{j=0}^{m-1} \psi_j W_{n+m-j} \right)^2
\]

\[= \sigma_w^2 \sum_{j=0}^{m-1} \psi_j^2.\]
Linear prediction based on the infinite past

That is, the mean squared error of the forecast based on the infinite history is given by the initial terms of the causal (MA(∞)) representation:

\[
E \left(X_{n+m} - \tilde{X}_{n+m} \right)^2 = \sigma_w^2 \sum_{j=0}^{m-1} \psi_j^2.
\]

In particular, for \(m = 1 \), the mean squared error is \(\sigma_w^2 \).
The truncated forecast

For large n, truncating the infinite-past forecasts gives a good approximation:

\[
\tilde{X}_{n+m} = -\sum_{j=1}^{m-1} \pi_j \tilde{X}_{n+m-j} - \sum_{j=m}^{\infty} \pi_j X_{n+m-j}
\]

\[
\tilde{X}_{n+m}^n = -\sum_{j=1}^{m-1} \pi_j \tilde{X}_{n+m-j}^n - \sum_{j=m}^{n+m-1} \pi_j X_{n+m-j}.
\]

The approximation is exact for AR(p) when $n \geq p$, since $\pi_j = 0$ for $j > p$. In general, it is a good approximation if the π_j converge quickly to 0.
Example: Forecasting an ARMA(p,q) model

Consider an ARMA(p,q) model:

\[X_t - \sum_{i=1}^{p} \phi_i X_{t-i} = W_t + \sum_{i=1}^{q} \theta_i W_{t-i}. \]

Suppose we have \(X_1, X_2, \ldots, X_n \), and we wish to forecast \(X_{n+m} \).

We could use the best linear prediction, \(X_{n+m}^n \).

For an AR(p) model (that is, \(q = 0 \)), we can write down the coefficients \(\phi_n \).

Otherwise, we must solve a linear system of size \(n \).

If \(n \) is large, the truncated forecasts \(\tilde{X}_{n+m}^n \) give a good approximation. To compute them, we could compute \(\pi_i \) and truncate.

There is also a recursive method, which takes time \(O((n + m)(p + q)) \)...
Recursive truncated forecasts for an ARMA(p,q) model

\[\tilde{W}_t^n = 0 \quad \text{for } t \leq 0. \]
\[\tilde{X}_t^n = \begin{cases}
0 & \text{for } t \leq 0, \\
X_t & \text{for } 1 \leq t \leq n.
\end{cases} \]
\[\tilde{W}_t^n = \tilde{X}_t^n - \phi_1 \tilde{X}_{t-1}^n - \cdots - \phi_p \tilde{X}_{t-p}^n \\
- \theta_1 \tilde{W}_{t-1}^n - \cdots - \theta_q \tilde{W}_{t-q}^n \quad \text{for } t = 1, \ldots, n. \]
\[\tilde{W}_t^n = 0 \quad \text{for } t > n. \]
\[\tilde{X}_t^n = \phi_1 \tilde{X}_{t-1}^n + \cdots + \phi_p \tilde{X}_{t-p}^n + \theta_1 \tilde{W}_{t-1}^n + \cdots + \theta_q \tilde{W}_{t-q}^n \]
\[\quad \text{for } t = n + 1, \ldots, n + m. \]
Example: Forecasting an AR(2) model

Consider the following AR(2) model.

\[X_t + \frac{1}{1.21} X_{t-2} = W_t. \]

The zeros of the characteristic polynomial \(z^2 + 1.21 \) are at \(\pm 1.1i \). We can solve the linear difference equations \(\psi_0 = 1, \phi(B)\psi_t = 0 \) to compute the MA(\(\infty \)) representation:

\[\psi_t = \frac{1}{2} 1.1^{-t} \cos(\pi t/2). \]

Thus, the \(m \)-step-ahead estimates have mean squared error

\[E(X_{n+m} - \hat{X}_{n+m})^2 = \sum_{j=0}^{m-1} \psi_j^2. \]
Example: Forecasting an AR(2) model

AR(2): $X_t + 0.8264 X_{t-2} = W_t$
Example: Forecasting an AR(2) model

\[
AR(2): X_t = 0.8264 X_{t-2} + W_t
\]

![Graph showing the AR(2) model with time series data](image)
Example: Forecasting an AR(2) model

AR(2): \(X_t + 0.8264 X_{t-2} = W_t \)

- 95% prediction interval
- One-step prediction
Example: Forecasting an AR(2) model

AR(2): $X_t + 0.8264 X_{t-2} = W_t$

X_t prediction
−−−− 95% prediction interval
Introduction to Time Series Analysis. Lecture 10.
Peter Bartlett

1. Review: Forecasting, the innovations representation.
2. Forecasting h steps ahead.
3. Example: Innovations algorithm for forecasting an $\text{MA}(1)$
4. An aside: Innovations algorithm for forecasting an $\text{ARMA}(p,q)$
5. Linear prediction based on the infinite past
6. The truncated predictor