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1. To check that {Xt} is white noise, we need to compute its means and
covariances. For the means, EXt = EWt(1 − Wt−1)Zt = (EWt)(1 −
EWt−1)(EZt) = 0. For the covariances,

γ(s, t) = E
(

Ws(1 − Ws−1)ZsWt(1 − Wt−1)Zt

)

= E
(

Ws(1 − Ws−1)Wt(1 − Wt−1)
)

· EZsZt.

If s 6= t then the last term is EZsZt = EZs · EZt = 0. Therefore {Xt} is
uncorrelated. If s = t then EZsZt = EZ2

t = 1 and so

γ(t, t) = EW 2
t
(1 − Wt−1)

2 =
1

4
.

Thus, {Xt} has constant variance. Hence it is white noise.

To show that {Xt} is not i.i.d, note that Xt−1 = 1 implies that Wt−1 = 1,
which implies that Xt = 0. Therefore

P (Xt−1 = 1, Xt = 1) = 0.

Since this is not equal to P (Xt−1 = 1)P (Xt = 1) = 1/64, Xt and Xt−1

are not independent.

2. (a) Xt = Wt − Wt−3 is a stationary process: EXt = EWt − EWt−3 = 0
and

γ(s, t) = EXsXt = EWsWt + EWsWt−3 + EWs−3Wt + EWs−3Wt−3

= 1{s=t} + ·1{s=t−3} + ·1{s−3=t} + ·1{s−3=t−3}

= 2 · 1{|s−t|=0} + 1{|s−t|=3},

which is a function of |s − t|.

(b) Xt = W3 is a stationary process because EXt = EW3 = 0 and
EXsXt = EW 2

3 = 1.

(c) Xt = W3 + t is not a stationary process because its mean is not
constant: EXt = t.
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(d) Xt = W 2
t

is a stationary process: EXt = EW 2
t

= 1 and

EXsXt = EW 2
s
W 2

t
=

{

3 if s = t

1 if s 6= t.

(e) Xt = WtWt−2 is a stationary process: EXt = EWtEWt−2 = 0 and
γ(s, t) = EWsWs−2WtWt−2 = 1{s=t}.

3. If Xt = Wt−1 + 2Wt + Wt+1, then

γ(t, t) = E(Wt−1 + 2Wt + Wt+1)
2 = EW 2

t−1 + 4EW 2
t + EW 2

t+1 = 6σ2
w

γ(t, t + 1) = E(Wt−1 + 2Wt + Wt+1)(Wt + 2Wt+1 + Wt+2)

= 2EW 2
t

+ 2EW 2
t+1 = 4σ2

w

γ(t, t + 2) = E(Wt−1 + 2Wt + Wt+1)(Wt+1 + 2Wt+2 + Wt+3)

= EW 2
t+1 = σ2

w

and γ(t, t + h) = 0 for h ≥ 3. By symmetry, γ(t, t − h) = γ(t, t + h).

For the autocorrelation function, we saw above that γ(t, t) = 6σ2
w for all

t. Therefore,

ρ(h) =
γ(t, t + h)

γ(t, t)

and so ρ(0) = 1, ρ(1) = 2/3, ρ(2) = 1/6 and ρ(h) = 0 for h ≥ 3.

The plots of the autocorrelation and autocovariance are shown in Figure 1

4. (a) If we differentiate with respect to A, we obtain

d

dA
MSE(A) =

d

dA
(EX2

t+ℓ
+ A2

EX2
t
− 2AEXtXt+ℓ)

= 2AEX2
t
− 2EXtXt+ℓ

= 2Aγ(0) − 2γ(ℓ).

Setting this to zero, we see that the minimum is obtained at A =
γ(ℓ)/γ(0) = ρ(ℓ).

(b) Plugging A = ρ(ℓ) back into the expression for MSE, we have

MSE(A) = γ(0) + ρ2(ℓ)γ(0) − 2ρ(ℓ)γ(ℓ) = γ(0)(1 − ρ2(ℓ))

since γ(ℓ) = ρ(ℓ)γ(0).

5. The plots for this problem are shown in Figure 2

(a) Xt oscillates regularly, with period about 4. This is to be expected
because Xt is strongly negatively correlated with Xt−2. In Vt, the
oscillations are smoothed out.
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Figure 1: Autocorrelation and autocovariance plots for Problem 3.
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Figure 2: Plots for Problem 5.

3



Homework 1 solutions, Fall 2010 Joe Neeman

(b) Xt oscillates with period 4. Since there is no noise, Vt completely

smooths out the oscillations, resulting in a flat line.

(c) Xt oscillates more-or-less with period 4, but there is quite a bit of
noise. Vt smooths the oscillations.

(d) The same pattern is visible in (a)–(c). In each case, Xt had regular
oscillations with period 4, and Vt smoothed out the oscillations, more
or less. This was particularly noticeable in part (b) since there was
no noise. Part (a) is a little different from the other two because it
is not stationary, but this isn’t particularly visible from the plots.
What is visible, however, is that Xt is strongly correlated with Xt+4

in part (a), while it isn’t in part (c). This can be seen from the fact
that the peaks in part (a) vary relatively smoothly.

The R code that generated the data for this problem is as follows:

w <- rnorm(100)

xa <- filter(w, filter=c(0, -0.9), method="recursive")

va <- filter(xa, filter=c(1/4, 1/4, 1/4, 1/4), method="convolution")

xb <- cos(2*pi*(1:100)/4)

vb <- filter(xb, filter=c(1/4, 1/4, 1/4, 1/4), method="convolution")

xc <- cos(2*pi*(1:100)/4) + w

vc <- filter(xc, filter=c(1/4, 1/4, 1/4, 1/4), method="convolution")

par(mfcol=c(3,1))

postscript(file="stat_153_solutions1_5.eps")

plot(cbind(xa, va), plot.type="single", lty=1:2)

plot(cbind(xb, vb), plot.type="single", lty=1:2)

plot(cbind(xc, vc), plot.type="single", lty=1:2)

dev.off()

6. The plot of the sample autocorrelation function is in Figure 3. The first
7 coefficients are approximately (1.00, 0.62, 0.13, 0.05, 0.00,−0.14,−0.20)
and the R code that generated the data is as follows:

w <- rnorm(102)

x <- filter(w, filter=c(1, 2, 1), method="convolution")[2:101]

postscript(file="stat_153_solutions1_6.eps")

a <- acf(x, type="correlation")

dev.off()

print(a$acf)
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Figure 3: Sample autocorrelation function for Problem 6.
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