
Introduction to Time Series Analysis. Lecture 15.

Last lecture: Maximum likelihood estimation

1. Integrated ARMA models

2. Diagnostics

3. Model selection

4. Seasonal ARMA models
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Integrated ARMA Models: ARIMA(p,d,q)

For p, d, q ≥ 0, we say that a time series {Xt} is an

ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is

ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.

Recall the random walk: Xt = Xt−1 + Wt.

Xt is not stationary, but Yt = (1 − B)Xt = Wt is a stationary process.

In this case, it is white, so {Xt} is an ARIMA(0,1,0).

Also, if Xt contains a trend component plus a stationary process, its first

difference is stationary.
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ARIMA models example

Suppose {Xt} is an ARIMA(0,1,1): Xt = Xt−1 + Wt − θ1Wt−1.

If |θ1| < 1, we can show

Xt =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xt−j + Wt,

and so X̃n+1 =
∞
∑

j=1

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn +

∞
∑

j=2

(1 − θ1)θ
j−1

1 Xn+1−j

= (1 − θ1)Xn + θ1X̃n.

Exponentially weighted moving average.
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Building ARIMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Nonlinearly transform data, if necessary

3. Identify preliminary values of d, p, and q.

4. Estimate parameters.

5. Use diagnostics to confirm residuals are white/iid/normal.

6. Model selection.
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Identifying preliminary values of d: Sample ACF

Trends lead to slowly decaying sample ACF:
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Identifying preliminary values of d, p, and q

For identifying preliminary values of d, a time plot can also help.

Too little differencing: not stationary.

Too much differencing: extra dependence introduced.

For identifying p, q, look at sample ACF, PACF of (1 − B)dXt:

Model: ACF: PACF:

AR(p) decays zero for h > p

MA(q) zero for h > q decays

ARMA(p,q) decays decays
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Diagnostics

How do we check that a model fits well?

The residuals (innovations, xt − xt−1
t ) should be white.

Consider the standardized innovations,

et =
xt − x̂t−1

t
√

P̂ t−1
t

.

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality
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Model Selection

We have used the data x to estimate parameters of several models. They all

fit well (the innovations are white). We need to choose a single model to

retain for forecasting. How do we do it?

If we had access to independent data y from the same process, we could

compare the likelihood on the new data, Ly(φ̂, θ̂, σ̂2
w).

We could obtain y by leaving out some of the data from our model-building,

and reserving it for model selection. This is called cross-validation. It

suffers from the drawback that we are not using all of the data for parameter

estimation.
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Model Selection: AIC

We can approximate the likelihood defined using independent data:

asymptotically

− lnLy(φ̂, θ̂, σ̂2
w) ≈ − lnLx(φ̂, θ̂, σ̂2

w) +
(p + q + 1)n

n − p − q − 2
.

AICc: corrected Akaike information criterion.

Notice that:

• More parameters incur a bigger penalty.

• Minimizing the criterion over all values of p, q, φ̂, θ̂, σ̂2
w corresponds to

choosing the optimal φ̂, θ̂, σ̂2
w for each p, q, and then comparing the

penalized likelihoods.

There are also other criteria: BIC.
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Pure seasonal ARMA Models

For P, Q ≥ 0 and s > 0, we say that a time series {Xt} is an

ARMA(P,Q)s process if Φ(Bs)Xt = Θ(Bs)Wt, where

Φ(Bs) = 1 −

P
∑

j=1

ΦjB
js,

Θ(Bs) = 1 +

Q
∑

j=1

ΘjB
js.

It is causal iff the roots of Φ(zs) are outside the unit circle.

It is invertible iff the roots of Θ(zs) are outside the unit circle.
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Pure seasonal ARMA Models

Example: P = 0, Q = 1, s = 12. Xt = Wt + Θ1Wt−12.

γ(0) = (1 + Θ2
1)σ

2
w,

γ(12) = Θ1σ
2
w,

γ(h) = 0 for h = 1, 2, . . . , 11, 13, 14, . . ..

Example: P = 1, Q = 0, s = 12. Xt = Φ1Xt−12 + Wt.

γ(0) =
σ2

w

1 − Φ2
1

,

γ(12i) =
σ2

wΦi
1

1 − Φ2
1

,

γ(h) = 0 for other h.
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