Introduction to Time Series Analysis. Lecture 15.

Last lecture: Maximum likelihood estimation
1. Integrated ARMA models

2. Diagnostics

3. Model selection

4. Seasonal ARMA models




‘ Integrated ARMA Models: ARI MA(p,d,q)I

For p, d,q > 0, we say that a time series { X;} is an
ARIMA (p,d,g) process if Y; = VX, = (1 — B)4X, is
ARMA(p,q). We can write

6(B)(1 - B)'X, = 0(B)W,.

Recall the random walk: X; = X,_; + W4.
X, iIs not stationary, but Y; = (1 — B)X; = W; is a stationary process.
In this case, it is white, so { X;} is an ARIMA(0,1,0).

Also, If X; contains a trend component plus a stationary process, its first
difference is stationary.




‘ARIMA modelsexample'

Suppose {X;} isan ARIMA(0,1,1): X;, = X; 1+ W; — W, _1.
If |6,] < 1, we can show
Xe =) (1-60)6]" X, + Wi,
j=1
andso X1 =) (1—61)6] ' X4

g=1

= (1= 01)Xn+ Y (1—01)6] " Xpy1-

j=2
= (1—601)X, + 61.X,.

Exponentially weighted moving average.




‘Building ARIMA models'

. Plot the time series.
Look for trends, seasonal components, step changes, outliers.

. Nonlinearly transform data, if necessary

. Identify preliminary values of d, p, and g.
. Estimate parameters.
. Use diagnostics to confirm residuals are white/iid/normal.

. Model selection.




‘ | dentifying preliminary values of d: Sample ACF I

Trends lead to slowly decaying sample ACF:




| dentifying preliminary values of d, p, and ¢ I

For identifying preliminary values of d, a time plot can also help.

Too little differencing: not stationary.
Too much differencing: extra dependence introduced.

For identifying p, ¢, look at sample ACF, PACF of (1 — B)9X,:

Model: ACF: PACF:
AR(p) decays zero forh > p
MA(Q) zero for h > q decays

ARMA(p,q) decays decays




Diagnostics'

How do we check that a model fits well?

The residuals (innovations, 2, — z!~ ') should be white.
Consider the standardized innovations,

~t—1
CCt—CEi

/ptt—1 '

This should behave like a mean-zero, unit variance, 1id sequence.

€t —

e Check a time plot

e Turning point test

e Difference sign test

e Rank test

e Q-Q plot, histogram, to assess normality




M odel Selection I

We have used the data « to estimate parameters of several models. They all
fit well (the innovations are white). We need to choose a single model to
retain for forecasting. How do we do it?

If we had access to independent data y from the same process, we could
compare the likelihood on the new data, L, (¢, 8, 52).

We could obtain y by leaving out some of the data from our model-building,
and reserving it for model selection. This is called cross-validation. It
suffers from the drawback that we are not using all of the data for parameter
estimation.




M odel Selection: AIC'

We can approximate the likelihood defined using independent data:
asymptotically

(p+g+1)n
n—-p—q—2

) ~ —lan($, é: 6-121)) T

AIC_: corrected Akaike information criterion.

Notice that:

e More parameters incur a bigger penalty.

e Minimizing the criterion over all values of p, ¢, ¢, 0, 52, corresponds to
choosing the optimal g&, 0, 62 for each p, ¢, and then comparing the
penalized likelihoods.

There are also other criteria;: BIC.




\ Pure seasonal ARMA M odels'

For P,Q > 0 and s > 0, we say that a time series { X;} is an
ARMA(P,Q); processif ®(B*)X; = O(B*)W,, where

P
O(B*)=1-)» ;B
j=1

Q@
O(B*)=1+) ©;B%".

g=1

It is causal iff the roots of ®(2°) are outside the unit circle.
It is invertible iff the roots of ©(z*) are outside the unit circle.
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\ Pure seasonal ARMA M odels'

Example: P=0,Q0 =1,s=12. X; = W; + ©:W;_11.

7(0) = (14 67)as,
7(12) — @103;7
) =0 forh=1,2,...,11,13,14,. ...

Example: P=1,0 =0,s =12. X; = &1 X;_15 + W4.

7(0)
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