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“Sideways” talk – broad range of topics.

Theorems exist but are peripheral to the most interesting conceptual
issues.

These slides and a draft paper write-up “Models for Connected Networks
over Random Points and a Route-Length Statistic” (with Julian Shun)
are on my web page.

Two central points.

Models for connected spatial networks have been rather neglected.

Two different ways to resolve a certain “paradox”.
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L = 1.25 d̄ = 2.5
Punctured lattice

L = 1.32 d̄ = 3 L = 1.50 d̄ = 3

L = 1.61 d̄ = 3 L = 2.00 d̄ = 4
Square lattice

L = 2.71 d̄ = 5

L = 2.83 d̄ = 4
Diagonal lattice

L = 3.22 d̄ = 6
Triangular lattice

L = 3.41 d̄ = 6

Figure 4. Variant square, triangular and hexagonal lattices.
Drawn so that the density of cities is the same in each diagram, and ordered by
value of L.
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Relative neighborhood network on 500 cities.
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Instead of vertices and edges let me say cities and roads. The figure

shows the relative neighborhood network on 500 random cities. This
network is defined by: (d denotes Euclidean distance)

there is a road between two cities x , y if and only if there is no other
city z with max(d(z , x), d(z , y)) < d(x , y).

This particular network is interesting because (loosely speaking) it is the
sparsest connected graph that can be defined by a simple local rule. It is
connected because it contains the MST.
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This relative neighborhood network is part of a family:

Proximity graphs

Write v− and v+ for the points (− 1
2 , 0) and ( 1

2 , 0). The lune is the
intersection of the open discs of radii 1 centered at v− and v+. So v−
and v+ are not in the lune but are on its boundary. Define a template A
to be a subset of R2 such that
(i) A is a subset of the lune;
(ii) A contains the line segment (v−, v+);
(iii) A is invariant under reflection (left - right and top - bottom)
(iv) A is open.
For arbitrary points x , y in R2, define A(x , y) to be the image of A under
the transformation (translation, rotation and scaling) that takes (v−, v+)
to (x , y).
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Definition. Given a template A and a locally finite set x of vertices, the
associated proximity graph G has edges defined by: for each x , y ∈ x,

(x , y) is an edge of G iff A(x , y) contains no vertex of x.

There are two “named” special cases.
If A is the lune then G is the relative neighborhood network.
If A is the disc centered at the origin with radius 1/2 then G is called the
Gabriel network.
Note that replacing A by a subset A′ can only increase the edge-set.
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Gabriel network on 500 cities.
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Let’s consider GA, the proximity graph associated with a Poisson point
process of rate 1 on R2. To indicate that GA is at least somewhat
tractable, note

Lemma

Write a = area(A). Then for GA

mean edge-length per unit area = π3/2

4a3/2

mean vertex degree = π
a .

One could continue along the lines of the Lemma to write down
complicated integral expressions for (e.g.) the mean number of triangles
per unit area in GA. In contrast to random geometric graphs [see Penrose
monograph] there seems only one known non-elementary result about GA

– the model deserves more study.
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The aspect of spatial networks that interests me is network distance
(minimum route-length) `(ξ, ξ′) between cities at Euclidean distance
d(ξ, ξ′). For any translation- and rotation-invariant spatial network we
can define

ρ(d) =
E(network distance between cities at distance d)

d
− 1.

Suppose we want to design a network where having short network
distances is a major goal. Obviously there’s a tradeoff between this and
the (normalized) network length L.

Here are (simulation) results.
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This Figure is the central theme of the talk . . . . . .

The same characteristic shape appears in all “reasonable” theoretical
networks we have studied.

Here’s some real data: the road network linking the 20 largest cities in a
State.

David Aldous Spatial random networks



Introduction
Proximity graphs
Network distance

In progress

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

r(
i,!
j)

Normalized!Distance!d(i,j)

California

R*

Weighted!R*

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

r(
i,j
)

Normalized!Distance!d(i,j)

Texas

R*

Weighted!R*

David Aldous Spatial random networks



Introduction
Proximity graphs
Network distance

In progress

Natural to conjecture that for any reasonable connected network on a
Poisson point process, the limit limd→∞ ρ(d) exists and is finite. But this
requires some further conditions, because for the MST (minimum
spanning tree) the limit is infinite.

We consider connected networks whose edges are defined by a
translation-invariant deterministic rule (applied to Poisson points); the
rule need not be local and need not be rotation-invariant.

For technical reasons we replace ρ(d) by the more tractable “integrated
out” form. Write U for unit square centered at origin, for z ∈ R2 write
z + U for unit square centered at z ; set

ρ̃(z) = E
∑
ξ∈U

∑
ξ′∈z+U

`(ξ, ξ′)

where the ξ are the Poisson points and `(·) is network distance. Note
ρ̃(z) not normalized.
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When do we have a linear upper bound

ρ̃(z) = O(|z |) as |z | → ∞. (1)

It turns out that one simple condition is sufficient. Consider the L× L
square [0, L]2. Then consider the subnetwork GL defined in words as

the cities in [0, L]2, with the roads that are present

regardless of the configuration of cities outside [0, L]2. (2)

The subnetwork GL need not be connected, so write N0
L for the number

of cities inside [0, L]2 that are not in the largest component of GL.
Consider the asymptotic essential connectedness property

L−2 EN0
L → 0 as L→∞. (3)

Theorem

If a network satisfies the asymptotic essential connectedness property (3)
then it has the linearity property (1).

Proved [hack] by comparison with oriented percolation.
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Now suppose we have the linear upper bound
ρ̃(z) = O(|z |) as |z | → ∞ . (1)

We can prove a weak form of

Conjecture

Writing z = (r , θ) in polar coordinates, (1) implies existence of limits

ρ̃(r , θ) ∼ rψ(θ) as r →∞ (4)

and a corresponding L1 and a.s. limit for the random network distances.

This intuition arises in part from an analogy with the shape theorem for
first-passage percolation on the edges of the grid Z2. In the usual such
model the times τ(e) attached to edges e are assumed i.i.d., but the
proof (based on the subadditive ergodic theorem) extends to the setting
where the τ(e) are assumed only to be ergodic translation-invariant.
Studying route-lengths in random networks built over Poisson point
processes is perhaps the most natural continuum analog of studying
first-passage times in such lattice models. But surprisingly hard to apply
subadditive ergodic theorem in this setting.
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Returning to proximity graphs, one can check (not trivial but not too
hard) that the relative neighborhood network satisfies the asymptotic
essential connectedness property. Now the first theorem implies the
O(|z |) bound for this, and therefore for every other, proximity graph; the
second theorem then implies existence of a limit constant limd→∞ ρ(d)
for each proximity graph.

That was all rather technical – matters arising from the simulation results
let’s continue to a more conceptually interesting matter arising from the
simulation results.
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We want one statistic R, usable in both PP and finite-n models, to
measure how effective the network is in providing short routes. This will
enable us to study networks giving optimal tradeoff between R and
normalized total network length L.
Goal: optimal networks should be realistic and mathematically
interesting . . . . . .

First attempt to define R:

use limd→∞ ρ(d) in the PP model

use the average over all city-pairs (x , y) of `(x,y)
d(x,y) − 1 in the finite-n

model.

Central “paradox”: this doesn’t achieve the goal. Because one can
design the following kind of network [Aldous - Kendall 2008]
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A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a
set of n edges that link (associate) pairs of vertices to each other. A graph
may be embedded in a space, in which case the set V is associated with a
set of m points, one for each vertex, and the set E is represented by lines
connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m
data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation
partitions a set of data points such that every point within a polygon is
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So we really want our network to provide short routes on all
distance-scales. This prompts us to use the statistic

R := max
0≤d<∞

ρ(d).

In words, R = 0.2 means that on every scale of distance, route-lengths
are on average at most 20% longer than straight line distance.

Next figure compares values of R and L for different networks over a PP.
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The ◦ show the beta-skeleton family of proximity graphs, with RN the
relative neighborhood network and G the Gabriel network. The • are
special models: 4 shows the Delaunay triangulation, � shows the
network G2 and ♦ shows the Hammersley network.
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Hammersley network on 2500 random cities. Each city has exactly 4
roads, one in each quadrant (NE, NW, SE, SW).
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Figure 4. Variant square, triangular and hexagonal lattices.
Drawn so that the density of cities is the same in each diagram, and ordered by
value of L.
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This definition of R provides one way to resolve the paradox. There is no
reason to believe the beta-skeleton family is exactly optimal. Intuitively,
we expect to be able to construct networks that improve over these
proximity graphs. for instance by introducing junctions. But in ongoing
simulation projects [by undergraduates] our first three ideas failed to work
well . . . . . . (see next slide).

So we don’t really know what the optimal networks look like.
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Work in progress

If a lion could talk, we could not understand him. (Ludwig
Wittgenstein)

The main lesson we should take away from the efficient market
hypothesis for policymaking purposes is the futility of trying to deal
with crises and recessions by finding central bankers and regulators
who can identify and puncture bubbles. If these people exist, we [the
government] will not be able to afford them. (Robert Lucas)

Copying the rhetorical format of these quotes, I say

If there were fractal roads, we would not be able to drive on them.
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We’ve regarded the n→∞ limit of n-city model as the PP model.
Could we instead regard the limit as the continuum R2?

Copying the abstract of Aizenman - Burchard - Newman - Wilson (1999)

A general formulation is presented for continuum scaling limits of
stochastic spanning trees. A spanning tree is expressed in this limit
through a consistent collection of subtrees, which includes a tree for
every finite set of endpoints in Rd . Tightness of the distribution, as
δ → 0, is established for the following two-dimensional examples: the
uniformly random spanning tree on δZ2, the minimal spanning tree on
δZ2 (with random edge lengths), and the Euclidean minimal spanning
tree on a Poisson process of points in R2 with density δ−2. In each case,
sample trees are proven to have the following properties, with probability
one with respect to any of the limiting measures:
(iii) the branches are also rough, in the sense that their Hausdorff
dimension exceeds one . . .

Let’s try the same approach for networks that are not trees.
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Suppose; for each pair of points (z , z ′) in the plane, there is a random
route R(z , z ′) = R(z ′, z) between z and z ′.

The process distribution (FDDs only) has
(i) translation and rotation invariance
(ii) scale invariance .
Note that scale-invariance refers to routes, as point-sets in R2, being
invariant in distribution under Euclidean scaling.
Scale invariance implies that the route-length Dr between points at

distance r apart must scale as Dr
d
= rD1, where of course 1 ≤ D1 ≤ ∞.

We are interested in the case

1 < ED1 <∞

in which case we can use ED1 as a statistic analogous to R.
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Now consider lengths of subnetworks. Take k uniform random points
Z1, . . . ,Zk in a square of area k (“density 1” convention) and consider
the length len[S(Z1, . . . ,Zk)] of the random network S(Z1, . . . ,Zk)
linking the points. Note E len[S(Z1, . . . ,Zk)] <∞. Easy to see that
there always exists a constant 0 < ` ≤ ∞ such that

E len[S(Z1, . . . ,Zk)] ∼ `k as k →∞. (5)

In the complete graph E len[S(Z1, . . . ,Zk)] grows as k5/2 so ` =∞.

We use ` as “normalized network length”, analogous to L. Assuming
there exist networks with

1 < ED1 <∞; ` <∞

we can repeat our previous program of studying the optimal tradeoff
between ` and ED1. But do such networks actually exist?

Yes; but we don’t know any that is tractable enough to do concrete
calculations. I’ll outline one construction and mention a second.
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Consistent under binary refinement of lattice, so defines routes
between points in R2.

Ensures ED1 ≤
√

2.

Force translation and rotation invariance by randomization.

Invariant under scaling by 2; randomization gives full scaling
invariance.

But ` =∞ because of routes between city-pairs than are approx
vertically or horizontally aligned (instead of diagonally aligned).

Trick: Take two independent copies of the process, rotate one by 45
degrees, superimpose.

This construction works: ED1 = 1.168.... by trigonometry and get a
crude bound ` ≤ 182.

Interesting as “symmetry-breaking”; Euclidean-invariant problem on R2

but any feasible solution must break symmetry to have freeways.
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