Topic 1: a paper The asymmetric one-dimensional
constrained Ising model by David Aldous and
Persi Diaconis. J. Statistical Physics 2002.

Topic 2: my speculation on use of “constrained
Ising” as algorithm for storage in dynamic graphs
(wireless sensor networks).



The East Process

Parameter O < p < 1. Equivalent descriptions:

H
e - ¢ ratel —np.

or: each particle, after exponential(1) random
time, sends a ‘pulse” to site on its East; that
site is reset via

P(occupied) = p, P(unoccupied) =1 — p.

Process is time-reversible, stationary distribu-
tion i.i.d. Bernoulli(p).

Seek to quantify the heuristic observation
& for small p, the East process takes a long
time to change substantially.



East process is simple prototype of family of
constrained Ising-type processes which have been
studied in physical chemistry: ‘supercooled
liguid near the glass transition’ .

Mathematically, it's a nice example of a simply-
describable process which converges slowly to
equilibrium.

For small p, particles are typically isolated. Next
slide shows (schematically) a realization of the
East process from an isolated particle.
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Study relaxation time 7(p) = 1/(spectral gap)
of the East process (X(t),0 <t < c0):

max cor(f(X(0)),g9(X(t))) = exp(—t/7(p)).

A 3-line very rough argument suggests

| 1
r(p) ~ (1) P asplo.

1. 7(p) = time for influence from one particle
Py X

. m=1/p
to reach distance =~ 1/p o o X

2. Let h(m) be minimum, over all paths from
configuration x to X, of the maximum number
of particles in any intermediate configuration.
Then (next slide) h(m) ~ logo m.

3. Potential barrier between configurations x
and X: need to pass through configurations of
chance ¢ = p™1/P) LD nheuristics suggest time
required =~ 1/q.




A path of possible transitions
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See Chung-Diaconis-Graham (2001) for more
on the combinatorics.



Rephrase conclusion of heuristic as

109 7(p) ~ @ 1092(1/p)-

Theorem. Asp | O
14+ 0(1)

ogr(p) < = 109%(1/p)
L _»
> 2|Og(21) l0g”(1/p).

Proofs are nice mixture of techniques.



Proof of upper bound will use Poincaré
comparison with a certain long-range “wave”
process — cf. Holley (1985).

1. Analyze relaxation time of the long-range
process using coupling and exponential martin-
gales.

2. Make the comparison using minimum-energy
paths.

Proof of lower bound uses the variational
characterization

sup var g
T = :
9 £(g9,9)

But (unusual) not easy to guess good g. We
end up by

3. defining g implicitly in terms of a certain
coalescing random jumps process.



The East process on sites Z+, site O always
occupied.

Bottom configuration is extension of top con-
figuration. Can couple to preserve that rela-
tionship. In particular, can couple

(*) the process X9(t) started with only site O
occupied

(**) the stationary process.

At t the two processes agree on sites O through
R(t) = rightmost occupied site of X9(¢). So,
restricting to sites [0, m] for fixed m,

I1P(XO(t) € ) — n()|] < P(R(t) < m)

where 7 is (restricted) stationary dist. By the
elementary relationship between asymptotic vari-
ation distance and spectral gap,



R(t) for process XY

(*) If P(R(t) <m) = O(e_kt) as t — oco; Vm
then spectral gap > .

But can’'t analyze R(t) for East process; so
invent long-range “wave” process for which (*)
holds and R(t) can be analyzed.

The wave process. Each particle, after ex-
ponential(1) random time, sends a “wave” to
cover the 10/p sites on its East; those sites are
reset to i.i.d. Bernoulli (p).

Can prove the wave process has spectral gap
> XA = 3/10 by showing

exp(At — OR(t)) is a supermartingale

for some 6 > O.
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Set 2™ ~ 1/p. Consider typical transition of
wave process.

sites 0 1/p
X e e e
y e e

Can expand transition as path of transitions of
East process, with path-length 2-3™ and using
configurations with at most max(x,y) +m+1
particles. Comparison argument of Diaconis &
Saloff-Coste (1993) gives

T(East) " induced flow x — X
< 2-37 x max —
7(Wave) X,X East flow x — X

< poly(1/p) x (1/p)™ ~ (1/p)'°92"™.
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T he Lower Bound

Need to choose g and apply

var g
T = SuUp
9 £(g9,9)

£(9,9) ‘= % Itilng E(g(X(t)) — g(X(0)))=.
Idea: occupied site with large gap to left per-

sists for long time.

But hard to convert to definition of g. We
use indirect approach. Take sites 0 thru 1/p,
with site O always occupied. From some initial
configuration x define a coalescing process by:
each particle (site j say) merges with nearest
particle to its left (site i say) at rate p/—.
Ultimately only one particle away from site O.
Define

g(x) = P(final particle in left half of site-interval).
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g(x) = P(final particle in left half of site-interval).

Immediate: var g(-) > 6 > 0 Vp.

So want to show £(g,g) is very small, of order
p'°9(1/p)  Consider typical transition of East
process:

X

—~

X -

|g(X) — g(x)| < chance first move of coalescing
process started at X is not ee — eo.

For typical x this chance is pl/P; sufficiently
small. But we need bound for all configura-
tions; technically hard.
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Final Remarks

1. Everyone knows that one-dimensional Ising-
type models have non-zero spectral gap. But
standard theory assumes non-zero flip rates; in
fact not previously known that 7(p) < .

2. East model is very special case of very gen-
eral constructions. Take

e any reversible spin system X

e any family of neighborhoods N of sites 1

e any subset S; C {—1, +1}Vi\{i} of spin config-
urations in the neighborhood excluding 2 itself.

Define the constrained process by: flip rate at
site 7 is

same as for X if n'hood configuration € §;;
= 0 if not.
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Topic 2 — my speculations . ... ..

Wireless sensor net: very small devices, spread over
some real-world area, which measure properties of phys-
ical environment, communicate with each other (radio)
over short range, and with “base stations” which relay
information to/from human users.

e Cost (energy) of information storage/communication
not negligible.

e Individual devices may get destroyed/fail.

Math picture. Graph: vertex — sensor, edge — com-
munication link.

Want to store information (informally, a book) in the
network. Need more than one copy of each book. Cost
of storage/communication of title of book is negligible.
Set time unit so that cost of storage of book for one
time unit = cost of communicating the book.

Goal: a distributed algorithm which maintains a small
number of copies of each book over times much longer
than lifetimes of individual vertices.

Conceptual insight: Constrained Ising is such an algo-

rithm.
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Constrained Ising model on a finite graph.

For each edge (v,w) with v occupied, vertex w makes
transitions

occupied — unoccupied: rate 1 —p

unoccupied — occupied: rate p.

Stationary distribution is independent Bernoulli(p) con-
ditioned on non-empty.

Think how you would simulate this. For each occupied
v, at rate deg(v) send token to random neighbor w:

if w on, turn off with probability 1 —p

if w off, turn on with probability p.

This translates to storage algorithm. For each v and
each book currently stored at v, at rate deg(v) send
title to random neighbor w:

if w has book, delete with probability 1 —p

if w does not have book, with probability p send message
to v requesting book be transmitted to w.

So ...
How should constrained Ising [the algorithm] be-
have on a finite graph with p small?
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First-order effect: Isolated particles do RW at
rate p/2.

Second-order effect: A particle splits into two
non-adjacent particles at rate O(pQ). Two par-
ticles which become adjacent have chance O(1)
to merge.

Math Insight: Could directly define a process
of particles doing RW, splitting, coalescing —
but wouldn’'t know its stationary distribution.
Constrained Ising has these qualitative proper-
ties and a simple stationary distribution.
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By analogy with exclusion process (Morris 2004 )

Conjecture: mixing time of constrained Ising
= O(p~ ! x mixing time of RW).

Key point is that this should work on a dynamic
(changing) graph. Suppose number of vertices
stays between N/3 and 3N. Set p = 10/N.
Expect: if

p~ 1 x (mixing time of RW)

< (typical lifetime of vertex)

then information is preserved for a long time.

Challenge to prove anything like this!
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