
Topic 1: a paper The asymmetric one-dimensional

constrained Ising model by David Aldous and

Persi Diaconis. J. Statistical Physics 2002.

Topic 2: my speculation on use of “constrained

Ising” as algorithm for storage in dynamic graphs

(wireless sensor networks).
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The East Process

• • • •

Parameter 0 < p < 1. Equivalent descriptions:

• → • • rate p

• • → • rate 1− p.

or: each particle, after exponential(1) random

time, sends a “pulse” to site on its East; that

site is reset via

P (occupied) = p, P (unoccupied) = 1− p.

Process is time-reversible, stationary distribu-

tion i.i.d. Bernoulli(p).

Seek to quantify the heuristic observation

♣ for small p, the East process takes a long

time to change substantially.
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East process is simple prototype of family of

constrained Ising-type processes which have been

studied in physical chemistry: “supercooled

liquid near the glass transition”.

Mathematically, it’s a nice example of a simply-

describable process which converges slowly to

equilibrium.

For small p, particles are typically isolated. Next

slide shows (schematically) a realization of the

East process from an isolated particle.
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Study relaxation time τ(p) = 1/(spectral gap)

of the East process (X(t),0 ≤ t < ∞):

max
f,g

cor(f(X(0)), g(X(t))) = exp(−t/τ(p)).

A 3-line very rough argument suggests

τ(p) ≈
(
1
p

)log2 1/p
as p ↓ 0.

1. τ(p) ≈ time for influence from one particle

to reach distance ≈ 1/p v v
v

x̂

x

-
m = 1/p

2. Let h(m) be minimum, over all paths from

configuration x to x̂, of the maximum number

of particles in any intermediate configuration.

Then (next slide) h(m) ∼ log2 m.

3. Potential barrier between configurations x

and x̂: need to pass through configurations of

chance q = ph(1/p). LD heuristics suggest time

required ≈ 1/q.

5



A path of possible transitions
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See Chung-Diaconis-Graham (2001) for more

on the combinatorics.
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Rephrase conclusion of heuristic as

log τ(p) ∼
1

log2
log2(1/p).

Theorem. As p ↓ 0

log τ(p) ≤
1 + o(1)

log2
log2(1/p)

≥
1
2 − o(1)

log2
log2(1/p).

Proofs are nice mixture of techniques.
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Proof of upper bound will use Poincaré

comparison with a certain long-range “wave”

process – cf. Holley (1985).

1. Analyze relaxation time of the long-range

process using coupling and exponential martin-

gales.

2. Make the comparison using minimum-energy

paths.

Proof of lower bound uses the variational

characterization

τ = sup
g

var g

E(g, g)
.

But (unusual) not easy to guess good g. We

end up by

3. defining g implicitly in terms of a certain

coalescing random jumps process.
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The East process on sites Z+, site 0 always

occupied.

• • •
• • • •

Bottom configuration is extension of top con-

figuration. Can couple to preserve that rela-

tionship. In particular, can couple

(*) the process X0(t) started with only site 0

occupied

(**) the stationary process.

At t the two processes agree on sites 0 through

R(t) = rightmost occupied site of X0(t). So,

restricting to sites [0, m] for fixed m,

||P (X0(t) ∈ ·)− π(·)|| ≤ P (R(t) < m)

where π is (restricted) stationary dist. By the

elementary relationship between asymptotic vari-

ation distance and spectral gap,
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R(t) for process X0

• • •

(*) If P (R(t) < m) = O(e−λt) as t →∞; ∀m
then spectral gap ≥ λ.

But can’t analyze R(t) for East process; so

invent long-range “wave” process for which (*)

holds and R(t) can be analyzed.

The wave process. Each particle, after ex-

ponential(1) random time, sends a “wave” to

cover the 10/p sites on its East; those sites are

reset to i.i.d. Bernoulli (p).

Can prove the wave process has spectral gap

≥ λ = 3/10 by showing

exp(λt− θR(t)) is a supermartingale

for some θ > 0.
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Set 2m ≈ 1/p. Consider typical transition of

wave process.

sites 0 1/p

x • • •

y • •

Can expand transition as path of transitions of

East process, with path-length 2 ·3m and using

configurations with at most max(x,y)+m+1

particles. Comparison argument of Diaconis &

Saloff-Coste (1993) gives

τ(East)

τ(Wave)
≤ 2 · 3m ×max

x,x̂

induced flow x → x̂

East flow x → x̂

≤ poly(1/p)× (1/p)m ≈ (1/p)log2 m.
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The Lower Bound

Need to choose g and apply

τ = sup
g

var g

E(g, g)

E(g, g) := 1
2t limt↓0

E(g(X(t))− g(X(0)))2.

Idea: occupied site with large gap to left per-

sists for long time.

But hard to convert to definition of g. We

use indirect approach. Take sites 0 thru 1/p,

with site 0 always occupied. From some initial

configuration x define a coalescing process by:

each particle (site j say) merges with nearest

particle to its left (site i say) at rate pj−i.

Ultimately only one particle away from site 0.

Define

g(x) = P (final particle in left half of site-interval).
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g(x) = P (final particle in left half of site-interval).

Immediate: var g(·) > δ > 0 ∀p.
So want to show E(g, g) is very small, of order

plog(1/p). Consider typical transition of East

process:

x • • •

x̂ • • • •

|g(x̂)− g(x)| ≤ chance first move of coalescing

process started at x̂ is not •• → •◦.

For typical x this chance is p1/p; sufficiently

small. But we need bound for all configura-

tions; technically hard.
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Final Remarks

1. Everyone knows that one-dimensional Ising-

type models have non-zero spectral gap. But

standard theory assumes non-zero flip rates; in

fact not previously known that τ(p) < ∞.

2. East model is very special case of very gen-

eral constructions. Take

• any reversible spin system X

• any family of neighborhoods Ni of sites i

• any subset Si ⊆ {−1,+1}Ni\{i} of spin config-

urations in the neighborhood excluding i itself.

Define the constrained process by: flip rate at

site i is

same as for X if n’hood configuration ∈ Si;

= 0 if not.
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Topic 2 – my speculations . . . . . .

Wireless sensor net: very small devices, spread over
some real-world area, which measure properties of phys-
ical environment, communicate with each other (radio)
over short range, and with “base stations” which relay
information to/from human users.
• Cost (energy) of information storage/communication
not negligible.
• Individual devices may get destroyed/fail.

Math picture. Graph: vertex = sensor, edge = com-
munication link.

Want to store information (informally, a book) in the
network. Need more than one copy of each book. Cost
of storage/communication of title of book is negligible.
Set time unit so that cost of storage of book for one
time unit = cost of communicating the book.

Goal: a distributed algorithm which maintains a small
number of copies of each book over times much longer
than lifetimes of individual vertices.

Conceptual insight: Constrained Ising is such an algo-

rithm.
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Constrained Ising model on a finite graph.

For each edge (v, w) with v occupied, vertex w makes
transitions

occupied → unoccupied: rate 1− p

unoccupied → occupied: rate p.

Stationary distribution is independent Bernoulli(p) con-
ditioned on non-empty.

Think how you would simulate this. For each occupied
v, at rate deg(v) send token to random neighbor w:

if w on, turn off with probability 1− p

if w off, turn on with probability p.

This translates to storage algorithm. For each v and
each book currently stored at v, at rate deg(v) send
title to random neighbor w:
if w has book, delete with probability 1− p
if w does not have book, with probability p send message
to v requesting book be transmitted to w.

So . . .

How should constrained Ising [the algorithm] be-

have on a finite graph with p small?
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First-order effect: Isolated particles do RW at

rate p/2.

Second-order effect: A particle splits into two

non-adjacent particles at rate O(p2). Two par-

ticles which become adjacent have chance O(1)

to merge.

Math Insight: Could directly define a process

of particles doing RW, splitting, coalescing –

but wouldn’t know its stationary distribution.

Constrained Ising has these qualitative proper-

ties and a simple stationary distribution.
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By analogy with exclusion process (Morris 2004)

Conjecture: mixing time of constrained Ising

= O(p−1 × mixing time of RW).

Key point is that this should work on a dynamic

(changing) graph. Suppose number of vertices

stays between N/3 and 3N . Set p = 10/N .

Expect: if

p−1 × (mixing time of RW)

� (typical lifetime of vertex)

then information is preserved for a long time.

Challenge to prove anything like this!
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