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This talk has a different style.

Not start with a probability model for a random network and then study
its mathematical properties

instead start with some data, then try to find some simplified math
model that illuminates the data.

Advice to young researchers: the Socratic question: if you wish to make
an impact with new theory, should you
(i) choose a field with extensive theory and no data
(ii) choose a field with extensive data and no theory?

Also: I teach an undergraduate “probability in the real world” course –
20 lectures on different topics, each “anchored” by (ideally) new
real-world data that students could obtain themselves.



(22) Psychology of probability: predictable irrationality
(18) Global economic risks
(17) Everyday perception of chance
(16) Luck
(16) Science fiction meets science
(14) Risk to individuals: perception and reality
(13) Probability and algorithms.
(13) Game theory
(13) Coincidences, near misses and paradoxes.
(11) So what do I do in my own research? (spatial networks)
(10) Stock Market investment, as gambling on a favorable game
(10) Mixing and sorting
(9) Tipping points and phase transitions
(9) Size-biasing, regression effect and dust-to-dust phenomena
(6) Prediction markets, fair games and martingales
(6) Branching processes, advantageous mutations and epidemics
(5) Toy models of social networks
(4) The local uniformity principle
(2) Coding and entropy
(-5) From neutral alleles to diversity statistics





A 2012 paper “Evolution of subway networks” concludes

subway systems of very large cities consist of a highly-connected core
with branches radiating outwards.

You might regard this as

a remarkable observation; or

breathtakingly obvious [cf. MPB]

but it suggests a math project: make a model

model where people want to travel in a generic city

model costs/benefit of every possible subway network

find optimal networks (1-parameter family)

compare with data

In this field, one finds optimal networks via numerical optimization;
actual proofs about their detailed nature seem very hard.

This project not done (possible Masters thesis?); here’s a similar project
which has been done.
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FIG. 5: Optimal networks for the population distribution of the United States with p = 200 vertices for different values of δ
and with γ = 10−14.

the propagation delay proportional to the physical dis-
tance between vertices (computers and routers) and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our def-
inition of the length of an edge and assign to each edge
an effective length

l̃ij = (1 − δ)lij + δ (10)

with 0 ≤ δ ≤ 1. The parameter δ determines the user’s
preference for measuring distance in terms of kilometers
or legs. Now we define the effective distance between
two (not necessarily adjacent) vertices to be the sum of
the effective lengths of all edges along a path between
them, minimized over all paths. The travel cost is then
proportional to the sum of all effective path lengths

Z =
∑

i<j

wij l̃ij , (11)

and the optimal network for given γ and δ is again the one
that minimizes the total cost T + γZ. (Since the second
term in Eq. (10) is dimensionless, we normalize the length
appearing in the first term by setting the average “crow
flies” distance between a vertex and its nearest neighbor
equal to one.)

In Fig. 5 we show the results of the application of this
process to the lower 48 United States. When δ = 0 pas-

sengers (or cargo shippers) care only about total kilome-
ters traveled and the optimal network strongly resembles
a network of roads, such as the US interstate network.
As δ increases the number of legs in a journey starts
playing a more important role and the approximate sym-
metry between the vertices is broken as the network be-
gins to form hubs. Around δ = 0.5 we see networks
emerging that constitute a compromise between the con-
venience of direct local connections and the efficiency of
hubs, while by δ = 0.8 the network is dominated by a few
large hubs in Philadelphia, Columbus, Chicago, Kansas
City, and Atlanta that handle the bulk of the traffic. On
the highly populated Californian coast, two smaller hubs
around San Francisco and Los Angeles are visible. In
the extreme case δ = 1, where the user cares only about
number of legs and not about distance at all, the network
is dominated by a single central hub in Cincinnati, with
a few smaller local hubs in other locations such as Los
Angeles.

V. CONCLUSIONS

We have in this paper studied the problem of optimal
facility location, also called the p-median problem, which
consists of choosing positions for p facilities in geographic
space such that the mean distance between a member



Figure from 2006 Gastner-Newman paper “Optimal design of spatial
distribution networks”.

These examples part of a broad “statistical physics” literature surveyed in
2010 Barthélemy “Spatial Networks”; cites 338 papers, most without
proofs. So many open problems are implicit.

Can we invent much oversimplified math models in which we can prove
something?

My attempt: Spatial transportation networks with transfer costs (2008).

[Where does probability enter the story? – we model city positions as
random.]



Hub-and-spoke networks (passenger air travel; package delivery)

Setting: the time to travel a route depends on route length and number
of hops/transfers. A weighting parameter ∆ controls relative cost of
transfers.

For a network Gn linking n cities xn in square of area n, define

time to traverse a given route from xi to xj
= n−1/2( route length) + ∆( number of transfers ).

time(xi , xj) = min. time, over all routes

time(Gn) = avexi ,xj time(i , j)

≥ n−1/2avei,jd(i , j) := dist(xn).

This set-up leads to a 2-parameter question. What network Gn over cities
xn minimizes time(Gn) for a given value of total length and ∆?



Let’s think about designing a network where routes typically involve 3
hops (2 transfers). Here’s one scheme.

Divide area-n square into subsquares of side L.

Put a hub in center of each subsquare.

Link each pair of hubs.

Link each city to the hub in its subsquare (a spoke).

Cute freshman calculus exercise: what total network length do we get by
optimizing over L?

[length of short edges]: order nL

[length of long edges]: order (n/L2)2n1/2.

Sum is minimized by L = order n3/10 and total length is order n13/10.
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This construction gives a network such that (even for worst-case
configuration xn)

(i) time(Gn)− dist(xn)→ 2∆

length(Gn) = O(n13/10).

Note (i) says mean number of transfers → 2.

Theorem

For “really 2-dimensional” xn, no networks satisfying (i) can satisfy

length(Gn) = o(n13/10).

So the hub-and-spoke network is minimal length in an order-of-magnitude
sense. But proving that the minimal-length networks actually “look like”
the hub-and-spoke network in some quantifiable way seems very hard.



For road networks we have easy access to data (online maps), so it’s a
useful topic for working with undergraduates. But what to do?

Much literature on spatial networks assumes the graph network setting
– edges can only be line segments linking specified vertices. We are
thinking of edges as physical links and allow junctions – Steiner
networks.



The stretch or spanning ratio of a network is the maximum (over
vertex-pairs) of the ratio (route-length)/(Euclidean distance). Studied as
part of geometric spanner networks literature emphasizing algorithms.
Consider a network linking the points of a rate-1 Poisson point process
on the plane. Write Ψave(s) for the minimum possible mean length per
unit area of such a network, subject to the constraint “stretch ≤ s”.

Well-known results for the Delaunay triangulation:
Keil-Gutwin (1992): worst-case stretch ≤ 2.42
Miles (1970): length-per-unit-area for Poisson points = 3.40

imply Ψave(2.42) ≤ 3.40.

In preprint Stretch - Length Tradeoff in Geometric Networks. we study
upper and lower bounds on Ψave(s) in the Steiner network setting but our
bounds are embarassingly crude . . . . . .

• scope for clever ad hoc constructions to improve upper bounds.

• lower bounds rely on stochastic geometry – seem very hard to improve.



A point for each pair of cities
horizontal axis: straight-line distance

vertical axis: 0.3 means route-length 30% longer than straight-line distance

• Average route-length between city centers is ≈ 18% longer that
straight-line, on all scales.
• “Law of large numbers” for route-lengths.
What do we see in toy models of connected networks over random points?
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The function ρ(d) = average excess relative route-length, for cities at

normalized distance d , for three theoretical networks on random cities.



But the actual networks look very different

Good news or bad news?

Reasonable to speculate that ‘Law of large numbers” for route-lengths
holds very generally. What can we prove?



First imagine a completely general deterministic rule to create edges (city
- city roads) for an arbitrary configuration of vertices (“cities”) in R2.
Then require
• rule is translation- and rotation-invariant
• rule always produces a connected network.
Apply to a Poisson point process of “cities” on R2 and consider
R(d) = route-length between cities at distance d apart.
If we can prove

ER(d) = O(d) (1)

then subadditivity implies (not quite trivially) d−1R(d)→ c ∈ [1,∞).

However . . . (1) is not true for MST (or any other tree-network – cf.
BLPS (2001) for subtrees of lattice – minor research project to prove?)

Vague Conjecture: (1) true for every network which is not “essentially
a tree”.
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A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a
set of n edges that link (associate) pairs of vertices to each other. A graph
may be embedded in a space, in which case the set V is associated with a
set of m points, one for each vertex, and the set E is represented by lines
connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m
data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation
partitions a set of data points such that every point within a polygon is



It turns out that one simple condition is sufficient. Consider the L× L
square [0, L]2. Then consider the subnetwork GL defined in words as

the cities in [0, L]2, with the roads that are present

regardless of the configuration of cities outside [0, L]2. (2)

The subnetwork GL need not be connected, so write N0
L for the number

of cities inside [0, L]2 that are not in the largest component of GL.

Theorem

The condition
L−2 EN0

L → 0 as L→∞. (3)

implies ER(d) = O(d) and then d−1R(d)→ c ∈ [1,∞).

Hack proof in arXiv preprint Which Connected Spatial Networks on
Random Points have Linear Route-Lengths? – better paper soon . . .
Condition (3) is a “no long-range dependence” condition; how does it
relate to others: “ stability” (Penrose, Yukich . . . ); Stein’s method?



For road networks we have easy access to data (online maps), so it’s a
useful topic for working with undergraduates. But what to do?

In many science fields (e.g. gene regulatory networks), a large network is
studied by looking at frequencies of small subgraphs to see which are
most common – motifs.

And counting triangles etc is a classic topic within random graph theory.

What about road networks?





What to do with this data?
Consider the statistics of the sub-network we see in the window; do they
depend on real-world side-length of square?

For “proximity graph” type model; routes in large squares would stay
close to straight lines.

One idea is to consider topological shapes of subnetworks. Does the
distribution over shapes vary with scale?

About 70 shapes on 4 points – hard to count carefully – need to make an
atlas. Another undergraduate project . . . . . .
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Call a network scale-invariant if distribution of subnetworks on sampled
points does not depend on the scale.

As first sight this seems contradicted by our previous “law of large
numbers” graphic.

But major cities are not “randomly sampled points” in a road network.
Conjecture that sampling individual addresses would show the “spread”
decreasing more slowly with distance (undergraduate project – how
exactly to sample).

As the only relevant data by other people, Kalapala et al (2006) studied
proportions of route-length spent on the i ’th longest road segment in the
route (identifying roads by their highway number designation) and
observe that in the U.S. the averages of these ordered proportions for
1 ≤ i ≤ 5 are around (0.40, 0.20, 0.13, 0.08, 0.05) over a range of medium
to large distances. This is consistent with scale-invariance.



A point for each pair of cities
horizontal axis: straight-line distance

vertical axis: 0.3 means route-length 30% longer than straight-line distance

• Average route-length between city centers is ≈ 18% longer that
straight-line, on all scales.
• “Law of large numbers” for route-lengths.
What do we see in toy models of connected networks over random points?



With rather flimsy support from such data, we have started to study
scale-invariant network models. This is a new aspect of a broad
technique I call “exchangeable representations of n→∞ limits of
discrete random structures” exemplified by

continuum random tree as limit of uniform random n-trees

graphons as limits of dense graphs.

Key idea is to consider induced substructure on k randomly sampled
points; first let n→∞ for fixed k to get a limit continuous structure
over k points; these have consistent distributions as k increases, and so
define some random structure over infinitely many points.

In context of spatial networks, to be exactly scale-invariant we need to
work in the 2-dimensional continuum (cf. random walk and Brownian
motion) – a network specifies a route between arbitrary z1, z2 ∈ R2.
Formalizing this idea requires some work – 6 page overview paper True
scale-invariant random spatial networks – but starts with thinking of
subnetworks on finitely many points as analog of “finite-dimensional
distributions” of stochastic processes.



Final open problem.

There are two standard 1-parameter families of graph networks on
arbitrary configurations.
• (well-known) β-skeleton family
• (less well known) “power law cost” family. Parameter 1 < p <∞ cost
of jump xi to xj is ||xj − xi ||p. Include the edge (xi , xj) iff cheapest route
from xi to xj is the direct jump.

Open Problem: Give corresponding schemes – algorithmically simple
and mathematically natural – for defining Steiner networks on arbitrary
configurations

In particular, do any such schemes look like real-world road networks?



The circle-based 1.1-skeleton (heavy dark edges)
and 0.9-skeleton (light dashed blue edges) of a set
of 100 random points in a square.

The empty regions Rpq defining the
circle-based β-skeleton. Left: β < 1.
Center: β = 1. Right: β > 1.

Beta skeleton
From Wikipedia, the free encyclopedia

In computational geometry and geometric graph
theory, a β-skeleton or beta skeleton is an
undirected graph defined from a set of points in the
Euclidean plane. Two points p and q are connected
by an edge whenever all the angles prq are sharper
than a threshold determined from the numerical
parameter β.

Contents
1 Circle-based definition
2 Lune-based definition
3 History
4 Properties
5 Algorithms
6 Applications
7 Notes
8 References

Circle-based definition
Let β be a positive real number, and calculate an angle θ using
the formulas

For any two points p and q in the plane, let Rpq be the set of
points for which angle prq is greater than θ. Then Rpq takes the
form of a union of two open disks with diameter βd(p,q) for
β ≥ 1 and θ ≤ π/2, and it takes the form of the intersection of two
open disks with diameter d(p,q)/β for β ≤ 1 and θ ≥ π/2. When β = 1 the two formulas give the same
value θ = π/2, and Rpq takes the form of a single open disk with pq as its diameter.

The β-skeleton of a discrete set S of points in the plane is the undirected graph that connects two points
p and q with an edge pq whenever Rpq contains no points of S. That is, the β-skeleton is the empty

Beta skeleton - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Beta_skeleton
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Example of Random Geometric Graph with 256
vertices and distance=0.1.

Random geometric graph
From Wikipedia, the free encyclopedia

In graph theory, a random geometric graph is a
random undirected graph drawn on a bounded
region, e.g. the unit torus [0, 1)2. It is generated by

Placing vertices at random uniformly and
independently on the region

1.

Connecting two vertices, u, v if and only if the
distance between them is at most a threshold
r, i.e. d (u, v) ≤ r.

2.

Several probabilistic results are known about the
number of components in the graph as a function of
the threshold r and the number of vertices n.

References
Penrose, Mathew: Random Geometric Graphs
(Oxford Studies in Probability, 5), 2003.
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