Maximization of the distribution entropy of possible
pathes

Yiliang Zhang
July 18, 2015

School of Mathematical Sciences
Peking University
address: 315, 28#

email: 1300010719@pku.edu.cn

Abstract
We define the discrete state space as {0,1,2,3,...,N — 1, N} and we study
Xs(s=0,1,2,...,T), which takes value in {0,1,2,3,..., N —1, N}. Also, there are
some constraints for the distribution. In this article, we find the distribution of the
path with the largest entropy under the constraints by technique of chain rule and
lagrange.

Keywords: Markov chain, entropy, chain rule

1 A Lemma

N and m are given integers. There are two sequences {a;} and {blif} with a;, b, > 0(0 <@ <
N). p; is a probability distribution subject to the constraints) ;" , ip; = m and Zf\io P =
1(0 <i < N). Set the probability distribution which maximizes Zij\io a;p; — Zi]i() p; log p;
as p;(a) and the probability distribution which maximizes Zﬁio bip; — Zf\io p;logp; as
pi(b). The value of maximized Zfio (\)ipi — Zi]io p;log p; is set to be (+). So we have a
lemma.

Lemma.For Vi subject to 0 < ¢ < N, if a; < b;, then £(a) < e(b).

Proof.We can gain from a; < b; that

e(a) = ': a;pi(a) — ﬁ;pi(a) log pi(a) < ﬁ;bipi(a) - ﬁ;pi(a) log pi(a). (1)
However, we know p;(b) maximizes S bipi — S0, p; log pi, 50
ﬁ: bipi(a) — ﬁ:pi(a) log pi(a) < iv: bipi(b) — ipi(b) log pi(b) = £(b). (2)
That is h h B B
e(a) <e(b). (3)

2 Chain Rule

Now we want to find the distribution of possible pathes that maximizes the entropy. We
know from chain rule that

H(X,Y)=H(X)+ H(Y|X). (4)

So, now we set X to be the random variable on {1,2,3,..., N — 1, N} at step s, which
means the distribution of X is ps(7,-). And Y is the possible pathes after step s + 1.
Define e,(7) is the entropy of possible pathes to end start from i at step s. We have

es(i) = - Zps(laj) logps(laj) + Zps(iaj)es-i-l(j)' (5)

J J

Also, we have
. 7 1 N —1 N —1i
er-1(i) = —5;log & — ——log ——. (6)

By the method of Lagrange Multipliers, we can maximize every e(7). In that way, we can
calculate ps(7, j) by backwards induction. From the lemma we mentioned in section 1, we
can proof that the p,(i,j) we solved by this method maximizes the entropy of possible
pathes.

3 Computer Code

In this section, We provide the computer code we’ve written to solve the problem.

__author__ = ’Administrator’
from demo import x

from math import x

def get_distribution(m = 5, N= 10, b = [i%(10—1)/5 for i in range(11)]):
lam = sol_lambda(m, N, b)
¢ = sol_c(lam, N, b)
distribution = []
for j in range(len(b)):
distribution .append(c * e *xx (b[j] — lam * j))
return distribution
#print (get_distribution ())

def get_entropy (distribution, b):

value = 0
for i in range(len(b)):

value += b[i]| % distribution[i] — distribution[i] x \
log (distribution[i])
return value

class Markov:

def

def

def __init__(self, matrix, t, entropy):

self.jie = len(matrix)
self . matrix = matrix
self .time = t

self .entropy = entropy

def backwards_gen_distribution (self , n):
return get_distribution(n, self.jie — 1, self.entropy)

def backwards_gen(self):

t = self.time — 1

matrix = []

entropy = []

for k in range(self.jie):
distribution = get_distribution (k, self.jie — 1,

self .entropy)

value = get_entropy (distribution , self.entropy)
matrix .append (distribution)
entropy . append (value)

return Markov(matrix, t, entropy)

compound (ml, m2):
matrix = []
for i in range(len(ml)):
row = |[]
for j in range(len(m2[0])):
s =0
for k in range(len(ml[0
s +=ml[i][k] * m2]
row . append (s)
matrix . append (row)
return matrix

1)):
k][]

gen_last _matrix (N = 10, T = 10):
t=T-1
matrix = []

entropy = []

for i in range(N + 1):
distribution = []
distribution .append ((N — i) / N)
for j in range(1, N):

distribution .append (0)

distribution .append(i / N)
matrix.append(distribution)

if 1 in distribution:
value = 0
else:
value = — (i / N) % log(i / N) — ((N — i
log ((N

| S~—
-~
z

entropy . append (value)
return Markov(matrix, t, entropy)

def gen_Markov_chain(T = 10, N = 10):
Markov_chain = []
Markov_chain.append(gen_last_matrix (N, T))
for i in range(T — 1):
Markov_chain.append (Markov_chain[i].backwards_gen ())
return Markov_chain

def gen_distribution (T = 10, N = 10, start = 5):

markov_chain = gen_Markov_chain (T, N)

markov_chain.reverse ()

pre_distribution = []

pre_distribution .append ([markov_chain [0]. matrix [start |])

for i in range(len(markov_chain) — 1):
new_distribution = compound(pre_distribution[i],

markov_chain[i + 1].matrix)

pre_distribution .append(new_distribution)

return pre_distribution

#test

#example = gen_Markov_chain ()

#for i in range(len (example)):
#print (example [i]. matriz)

#print (gen_distribution ())

4 Test

We take the value that 7" = 10, N = 10 and start from N/2. So we can solve all the
ps(i,7). Set the initial distribution starting from N/2 is q(0) and transition matrix of
step s is T4(0 < s <9). So we can get:

a(t) = a(0) [T.. (7)

And obviously, we can easily get T from p4(i, 7), which is
T =p,(i — 1,5 —1). (8)

4

So, finally we get ¢;(s)(0 < j < 10,0 < s <9). Table 1 shows the output of g;(s).

Table 1: The value of ¢;(s)

j=20 1 2 3 4 5 6 7 8 9 10

s =0 .0000011 .00042 .011 .083 .24 .33 .24 .083 .011 .00042 .0000011
1 .00037 011 .054 .13 2 .23 2 13 .054 011 .00037
2 .0038 033 083 .13 .16 .17 .16 .13 .083 .033 .0038
3 014 .058 1 13 14 14 14 13 1 .058 .014
4 .032 .08 1011 12 12 120 12 1 .08 .032
) .06 .094 1 1 .096 .095 .096 d 1 .094 .06
6 .099 1 .096 086 .08 .078 .08 .086 .096 1 .099
7 16 098 .083 .07 .063 .061 .063 .07 .083 .098 .16
8 .25 076 .06 .05 .045 .044 .045 .05 .06 .076 25
9) 0 0 0 0 0 0 0 0 0)

