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Introduction: 
 

Urbanization is a process that many countries go through to be a developed country. The 

process is defined as populations migrate from low-density area to form high-density areas. It is 

estimated there are about 3000 cities in the world today
1
 with a population over 100,000, with 

many of them cluster together and become what is known as metropolitan areas, such as the San 

Francisco Bay Area, New York Area, the Five Lake region. Currently, many cities in the world, 

especially those in under developed countries, are forming in a non-systematic fashion. A model 

that can describe the dynamics of each cities and their relationship to one another will be 

invaluable to help city planner’s understanding of the cities. A better understanding of the cities 

can solve many city and regional planning problems optimally as well as control the city’s 

behavior in a desirable way. Examples of problems can be solved better includes but not limit to: 

predicting which neighboring cities suburban residents will go to work and shop, finding the 

optimal path for building highways without interfering each cities’ growth, assigning the best 

zoning code for each region within the city etc. 

 

This paper presents a mathematical model for mimicking the growth of cities. This model, 

however, can be also generalized to many other fields and applications due to its interesting 

mathematical properties. Some examples are: to find the safest path for robots to traverse 

through a dangerous terrain, to calculate the precipitation of an area from point measurements, 

saving both time and costs. Theoretical mathematical analysis of the behavior of the model is 

very difficult and produces limited results. This paper attempts to utilize simulation to investigate 

the model behavior and compare them to the theoretical results. 

 

The Model: 
 

The model has three major parts: model specifications, model step function and model 

properties due to different specifications. 

 

At a specific time t=1, 2, 3… there are cities at position (x,y)i within a unit square [1,1]
2
 , 

with population Ni (t) > 1. Total population is t. Three parameters of the models are 0 < C< ∞, 0 

< a <∞, b > 0. The influence of each city to some point is defined by the function: 

 

 I (n,r) = C n
a
 r

b 

 

Where n is the population and r is the direct distance from the center of the city. 

 

The sphere of influence of a city is then: 
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S (i,t) = {all P such that I (N(t), |P-x|) = I (P,t) } 

 

Where P is any points on the unit square and x is the center of specific city. 

 

This model will then evolve stochastically with time. U represents a new immigrant uniform 

randomly arrive at some point within the unit square: 

 

i) With probability 1/ (1+I (U,t)) a new city is found with population 1. 

ii) With probability I (U,t) / (1+I(U,t)) joins the city I for which U contains in S(i,t), 

therefore increases the population by 1. 

Where I (U,t) is the maximum of {S(i,t)  for all i}. 

 

The model has different properties depending on the specification
2
: 

 

1) If 0 < a < 1 and b > 2a, the cities exhibit balanced growth behavior, meaning no single 

city can grow too fast relative to others. 

2) If a > 1 or b < 2a, one of the city will have dominant effect over all other cities with large 

population, which is the unbalance grow scenario. 

3) The critical boundary is when a = 1 and b > 2a. 

 

Simulation Method and Data: 
 

The main program we used for the simulation is Matlab. This program has many 

powerful features that allow users to easily create the data generating process and eventually 

visualize the result using 2-D graphics.  

The entire simulation is done on a user-defined object in Matlab called points, which 

contains all the pertinent information about the unit square, including city positions and their 

population at t. The following example is a points object at t=20 for a = 0.2, b=0.9 and c =1: 

 

points = 

  Columns 1 through 7 

    0.5469    0.3922    0.7060    0.0344    0.7655    0.7094    0.6797 

    0.9575    0.6555    0.0318    0.4387    0.7952    0.7547    0.6551 

    9.0000    2.0000    2.0000    2.0000    1.0000    1.0000    1.0000 

  Columns 8 through 10 

    0.3404    0.7513    0.5472 

    0.5853    0.2551    0.1386 

    1.0000    1.0000    1.0000 

 

The first row is the x position of the cities within the unit square. The second row is the y 

position of the unit square. Lastly, the integers in third row represent the population at the 

specific time for each of the cities. 
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A user-defined function is then used to help simulate the stochastic evolving process of 

the points object. It is called the newpoint function, which follows the model step function by 

adding an uniform random point sampled from the unit square into the system. Then, with 

probability 1/(1+I(U,t)),  this point will found a new city (add a new column to points with the 

position and population of 1), where I(U,t) is the highest influence neighboring city’s influence 

on the point’s position. Alternatively, it can join an existing city (+1 to third row). For the above 

example, the next step t=21, a new city is founded: 

 

 points = 

  Columns 1 through 7 

 

    0.5469    0.3922    0.7060    0.0344    0.7655    0.7094    0.6797 

    0.9575    0.6555    0.0318    0.4387    0.7952    0.7547    0.6551 

    9.0000    2.0000    2.0000    2.0000    1.0000    1.0000    1.0000 

  Columns 8 through 11 

    0.3404    0.7513    0.5472    0.2575 

    0.5853    0.2551    0.1386    0.8407 

    1.0000    1.0000    1.0000    1.0000 

 

One can verify this by noticing the new column in the object. 

 

 Even though the entire simulation process can be done without any graphical supports, it 

is extremely difficult to have an intuitive understand of the behavior of the system with only 

matrix representation. Therefore, we create a graphic function to visualize the changes. This 

function is a modified version Andrew Kwok’s original voronoi function. The two graphs below 

shows the changes of the system from the data above: 

 
   t = 20             t = 21 with newly founded city 

 

The numbers next to the dots in the graphs represents the population number for that city. 

 

Simulation and Analysis: 
 

Applying the method from the last section, we run 6 simulations of various model 

specifications and t = 100 to verify the theoretical properties of the models. 



 

The first simulation sets a = 0.2, b = 0.9 and c = 1. This is the balance growth scenario 

according to the theoretical derivation. Here are the resulting regions at t=100 for 2 different tries: 

 
The simulation confirms the theoretical hypothesis that for a < 1 and b > 2a, more large 

cities are likely to form and none of a single city has too much influence as all the cities have a 

relative equal chance of growing. In the second graph above, the highest influence city has a 

population of 11 while the first one has only 5. These graphics closely mimic the famous 

Voronoi Diagram. Indeed, when two cities have the equal population, the area between them will 

be the Voronoi bisection. 

 

The next two tries set a = 1.2 and b = 0.5, c is still 1. Same as last time, the terminating 

time t in this case is still 100. The graphs below are the results of the two simulations: 

 
 

As one can easily see from the two graphs, in both simulations, one single city dominates 

the entire region---in our simulation, the first one having a population of 54 and the second one 

44. This happens because the first city has a much higher chance of attracting the new arrivals, 

and this result in its enhancing ability to retain the other new arrivals in the future. All other 

cities, on the other hand, can form but having difficulties retaining new immigrants. 

 

The last simulation here is the critical case, when a = 1 and b = 2a. C is still set to be 1 for 

simplicity. The results are below: 



 
 

The boundary case is particular interesting because it exhibits the properties of both the 

unbalance growth case as well as the balance growth case---depending on the random position of 

the cities. The first graph above is closely related to the balance growth case: highest influence 

city has population of 9 and there are some other large cities—4, 4, 5 etc. However, in the second 

case, we also can tell the traces of the unbalance growth case: one of the cities has a population 

of 17 in the center, dominate the entire area. This differ from the unbalance case in that there are 

some other smaller cities with population higher than 1, such as the city with population 6 on the 

upper right hand corner of the second picture above. 

 

Conclusion: 
 

With the limited numbers of runs, all the results appear to confirm the theoretical 

derivation of categorizing the model into balance, unbalance and critical categories, depending 

on the model parameter a, b and c. For this model, when a is less than 1 and b is larger than 2a, 

the region exhibit balance growth. When a is larger than 1 and b less than 2a, the one city has 

majority of the influence. In the boundary case, either scenario can play out depending on the 

random selection outcome. The model parameter c is less meaningful as a scaling factor for the 

influences. 

 

Future Works: 

 

 This paper is by no mean a complete study of the behavior of the mathematical model 

above. It intends to provide some ground work for verifying the theoretical behaviors only. 

Further investigations are required for thorough understanding of the model before any actual 

applications. 
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Appendix:  
 

Matlab Code Files List 

1) Newpoint.m 

2) Mwvoronoi.m 

3) Makeregions.m 

4) Intersect.m 

5) Drawregions.m 

6) Drawarc.m 

7) Simulation.m 

 

 


