
Aldous notes: February 2002
xxx ”Up the River” game story
xxx need good name for the process!

First consider K ≥ 1 particles performing independent Brownian motion on
[0,∞), with state 0 absorbing, and each particle started at state 1 at time 0.
Call this the uncontrolled process, and write it as (X̃i(t), 0 ≤ t <∞, 1 ≤ i ≤ K).
We study a controlled process in which we have at our disposal a unit quantity
of positive drift, which we can distribute amongst the non-absorbed particles at
time t according to any control policy we choose. Thus a controlled process is
specified by (Xi(t), Ai(t), 0 ≤ t <∞, 1 ≤ i ≤ K) where the drift terms Ai must
satisfy

Ai(t) ≥ 0∑
i

Ai(t) ≤ 1

Ai(t) = 0 and Xi(t) = 0 if inf
s≤t

Xi(s) = 0.

In a controlled process, consider the number of particles which are never
absorbed

N := #{i : Xi(t) > 0 ∀t}.

(For the uncontrolled process, the corresponding number is of course zero.)
Suppose we seek to maximize EN . Then we can ask

• Which control policy maximizes EN?

• What is the resulting maximal value, say ψ(K), of EN?

As the next lemma shows, we can obtain the correct order of magnitude of ψ(K)
as K →∞ without needing to identify and analyze the optimal control.

Lemma 1 (a) ψ(K) ≥ (2e−1/2 − o(1))K1/2 as K →∞.
(b) ψ(K) ≤ 5π−1/2K1/2.

Proof. (a) Take 1 ≤ m ≤ K and consider the following control policy. For each
particle, assign no drift until it reaches position K/m and (if it does reach that
position and is one of the first m particles to do so) thereafter assign drift 1/m.
Clearly this is a permitted control policy. From the standard formulas

P1( Brownian motion, drift 0, hits K/m before hitting 0) = m/K

Px(Brownian motion, drift µ > 0, hits 0) = exp(−2µx)

we calculate

EN = exp(−2K/m2) · Emin(m,Bin(K,m/K))
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where Bin(·, ·) denotes a Binomial random variable. Now let K → ∞ with
m ∼ θK1/2, giving

EN ∼ θ exp(−2/θ2) K1/2.

The function θ → θ exp(−2/θ2) takes maximum value 2e−1/2 at θ = 2, estab-
lishing (a).

For (b), consider

ft(x) := Px

(
inf

0≤s≤t
Bs > 0

)
, x ≥ 0

where (Bs) is Brownian motion. Fix τ > 0. If Zt is Brownian motion with drift
µ then

dfτ−t(Zt) = dMt + µgτ−t(Zt)

where M is some martingale and gt(x) := d
dxft(x). Thus for the controlled

process (Xi(t), Ai(t)), if we define

Yt :=
∑

i

fτ−t(Xi(t)), 0 ≤ t ≤ τ

then
dYt = dMt +

∑
i

Ai(t)gτ−t(Xi(t))

where M is some martingale. But it is standard that gt is the density function
of the absolute value of a Normal(0, t) r.v., and this density is maximized at
x = 0 with maximum value

√
2/(πt). Integrating over 0 ≤ t ≤ τ gives

Yτ − Y0 ≤Mτ −M0 +
∫ τ

0

√
2/(π(τ − t)) dt

and so
EYτ ≤ EY0 +

√
8/π τ1/2.

Now
Y0 = Kfτ (1) ≤ K

√
2/(πτ).

Define
N(τ) := #{i : Xi(τ) > 0}.

So Tτ = N(τ), and so we have shown

EN ≤ EN(τ) ≤ K

√
2
πτ

+

√
8τ
π
. (1)

The right side is minimized at τ = 2K and gives bound (b).
.
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0.1 A conjectured fluid limit

From now on we analyze the particular policy

assign drift 1 to the lowest particle.

Write NK for the number of particles which survive forever. In view of Lemma
1 we expect the limit

lim
K→∞

K−1/2ENK

to exist; we will eventually formulate a conjecture for its value.
First reconsider the uncontrolled process. From the exact formula for P1(Bt ∈

·, inf0≤s≤tBs > 0) is it straightforward to deduce the following “fluid limit” re-
sult. As K →∞, for each y ≥ 0, t > 0,

K−1/2#{i : X̃i(tK) ≤ yK1/2} →p

∫ y

0

f̃(t, x) dx (2)

where
f̃(t, x) :=

√
2/πxt−3/2 exp(−x2/(2t)). (3)

Moreover f̃ is a solution of the heat equation

d

dt
f =

1
2
d2

dx2
f (4)

with the (absorbing) boundary condition

f̃(t, 0) = 0.

And the total mass F̃ (t) :=
∫∞
0
f̃(t, x)dx satisfies

F̃ (t) =
√

2/π t−1/2.

We now start to formulate a conjecture that the optimally controlled process
behaves in a qualitatively similar way, in that there is a fluid limit

K−1/2#{i : Xi(tK) ≤ yK1/2} →p

∫ y

0

f(t, x) dx (5)

for a certain f(x, t). Intuitively, f must also satisfy the heat equation and should
have similar small-t behavior to the uncontrolled process, say

f(t, x) ∼ f̃(t, x) as t→ 0 with x ∼ at1/2, a > 0. (6)

The effect of the control is to change the (left) boundary behavior, in (we con-
jecture) the following way. Let b(t) be a boundary of the form

b(t) = 0, 0 ≤ t ≤ t0; b(t) > 0, t > t0 (7)

for some t0. Then the boundary condition is

f(t, b(t)) = 2, 0 ≤ t <∞. (8)

Why the constant should be 2 is explained below Conjecture 3. Here is a more
careful statement.
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Conjecture 1 (a) There is a unique choice of b(t) of form (7) for some t0,
and of f(t, x) defined on the region D := {(t, x) : t ≥ 0, b(t) ≤ x}, such that
f satisfies the heat equation (4) on the interior of D, and satisfies the initial
condition (6) and the boundary condition (8) and the further boundary condition
d
dxf(t, x)|x=b(t) = 0 for t > t0.
(b) This f is the fluid limit of the controlled process, in the sense (5).

Before explaining why we expect this particular boundary behavior, let us
explain how (remarkably) the qualitative behavior asserted in Conjecture 1 leads
to a quantitative conjecture. Reconsider the argument leading to the inequality
(1) for N(τ). For large K, the only reason this is an inequality (rather than
an essential equality) is the fact gτ−t(X1(t)) < gτ−t(0), that is the fact that
X1(t) > 0. But the qualitative behavior in Conjecture 1 implies that for t ≤ t0K
the position X1(t) of the left-most particle will be close to 0 (relative to the K1/2

spatial rescaling), and the upshot is that (1) becomes an approximate equality

EN(τ) ≈ K

√
2
πτ

+

√
8τ
π

; τ ≤ t0K. (9)

Moreover the qualitative behavior of the boundary b(t) in Conjecture 1 implies
that only a negligible number of particles will be absorbed after time t0K;

EN ≈ EN(t0K). (10)

Now recall that the right side of (9) is mimimized at τ = 2K. Since EN(τ) is a
priori decreasing, (9) implies we cannot have t0 > 2. And since EN ≤ EN(2K),
(10) implies we cannot have t0 < 2. In other words, we must have t0 = 2, and
the upper bound derived from (1) must be asymptotically correct.

Conjecture 2 (i) limK K−1/2ENK = 5π−1/2.
(ii) In Conjecture 1 we have t0 = 2.

0.2 Stationary distributions for the controlled particle pro-
cess

Now switch viewpoints and consider the optimally-controlled process as an
interacting particle process with infinitely many particles. That is, particles
perform independent Brownian motion on [0,∞), with state 0 absorbing, and
with the leftmost non-absorbed particle being given drift rate 1. A natural
initial distribution is Pµ, the Poisson (rate µ) point process on [0,∞). Let
0 < ξ1(t) < ξ2(t) < . . . denote the positions of non-absorbed particles at time t.

Conjecture 3 (a) Under Pµ initial distribution, for any 0 < µ < ∞, we have
convergence in distribution

(ξi(t)− ξ1(t), i ≥ 1) →d (ηi, i ≥ 1)

where the limit distribution of 0 = η1 < η2 < η3 < . . . does not depend on µ and
has “density 2” in the sense

ηm/m→p 1/2 as m→∞. (11)
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(b) If µ < 2 then ξ1(t) ∼ cµt
1/2, where cµ := (1− µ

2 )
√

2/µ > 0.
(c) If µ > 2 then ξ1(t) = o(t1/2).

Let us first explain how Conjecture 3 suggests the boundary behaviour as-
serted in Conjecture 1. Consider the K-particle process at time tK; presum-
ably this has some density µ of particles over the spatial interval [0, L] where
1 � L� K1/2. Continue until time (t+ε)K: this time increment εK1/2 is large
in absolute terms, so the “relaxation to equilibrium” in Conjecture 3 says that
this density must become either 2 (if µ > 2) or 0 (if µ < 2). Thus in the fluid
limit we expect f to have f(t, 0) = 2 as long as the derivative d

dxf(t, x)|x=0 > 0.
Time t0 should then be the first time at which d

dxf(t, x)|x=0 = 0. There-
after the boundary b(t) behaves in such a way as to make f(t, b(t)) = 2 and
d
dxf(t, x)|x=b(t) = 0, the latter being the “reflecting barrier” boundary condi-
tion (for reasons described later).

0.3 Heuristics for Conjecture 3

The central idea is “2 is the critical density”, in a certain sense (so assertion (a)
could be viewed as “self-organized criticality”. But I digress!).

Suppose we initially have Pµ distribution, and suppose we let the particles
perform independent Brownian motions without boundary or control. Fix t.
The time-t distribution is a certain non-homogeneous Poisson process. If we
want to move particles to restore the initial distribution, how much “work”
(sum of distances moved, over all particles) do we need? This is easy by a trick;
if we had a reflecting boundary at 0 the process would be stationary. So the
reflection principle says we can just move any particle ending at −y to +y. Thus
the mean “work” required is∫ ∞

0

µdx 2 E(Bt − x)+ = µt/2.

Because we have drift 1 available, the amount of work available in time t equals
t. Thus µ = 2 is “critical” in that, to first order, the drift offsets the diffusive
tendancy. We expect the stationary distribution (ηi) to be something like the
P2 distribution.

For assertion (c), if µ < 2 then we have “extra push” from the drift which
will push the ensemble of particles away from 0. We expect that at time t,
there is some c+(t) such that the initial Pµ distribution on [0, c+(t)] has become
approximately a P2 distribution on some [c−(t), c+(t)]. To conserve particles
we must have

µc+(t) = 2(c+(t)− c−(t)) ⇒ c−(t) = (1− µ/2)c+(t).

The excess work must be enough to move these particles the required distance;
this gives

t− µt/2 = µc+(t)× c−(t)/2.

Solving for c−(t) gives the formula in (c).
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As for (b), the actual behavior of ξ1(t) in the case µ > 2 seems rather
subtle, since for trivial reasons (asymptotic rate of absorbed particles) we expect
ξ1(t) →p ∞ while the sample path of ξ1(t) must hit 0 infinitely often.

Another part of this big picture is that we expect the limit stationary process
(ηi(t)) to be qualitatively like the P2 stationary Brownian process with reflecting
barrier. (Hence the “reflecting barrier” condition in the fluid limit).
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