
6 Randomized optimization algorithms

6.1 Low temperature bounds

Regarding the Metropolis algorithm with large θ as a randomized optimiza-
tion algorithm (“simulated annealing at fixed temperature”), one natural
finite-time question to ask is “how long does it take to hit the minimum?”,
and a more technical question is “how large is the relaxation time”. Theorem
16 gives crude bounds on these quantities. In the simplest “graph-based”
Metropolis construction (Chapter 11 yyy) on a graph of maximal degree
r, the parameter ε in Theorem 16 becomes r−1, but the theorem doesn’t
exploit any specific Metropolis construction.

Consider a function H on a n-element set V and the corresponding dis-
tribution

π(v) = zθ exp(−θH(v))

where θ > 0. Consider an irreducible reversible Markov chain on V, whose
stationary distribution is π, and introduce the graph of possible transitions.
Suppose for simplicity that minv H(v) is attained at a unique vertex v∗.
Define the “critical depth” H" as follows. Let

Ĥ(v) = min
paths v∗=u0,u1,...,v

max
u∈path

H(u)

H"= max
v

Ĥ(v)−H(v).

Clearly H"≥ 0. When the values of H are all distinct, we have H"= 0 iff H
has no local minimum except the global minimum v∗.

Theorem 16 In the setting above,

1
2n

exp(θH") ≤ max
v

EvTv∗ ≤ ε−1n2 exp(θH")

1
2n

exp(θH") ≤ τ2 ≤ 4ε−1n2 exp(θH")

where
ε = min{P (v, x) : P (v, x) > 0, H(x) ≤ H(v)}.

The mathematical point of the theorem is that, when H"> 0, the θ ↑ ∞
asymptotics are dominated by the exp(θHupdownarrow) term. Bounds like
this are meaningless algorithmically – the upper bound is larger than the
number of states! On the other hand, in the θ = 0 (i.e. random walk on a

25



graph) case we know the O(rn2) bound is roughly optimal, in the absence
of further assumptions.

The proof below uses different arguments for the hitting time and the
relaxation time cases. We could alternatively invoke some general inequal-
ities from Chapter 4, as follows. From the definitions we have τ (2.5)

1 ≤
maxv EvTv∗ , and from Chapter 4 yyy and yyy we have τ2 ≤ τ1 ≤ Kτ (2.5)

1 ,
which combine to show that, for reversible chains,

τ2 ≤ K max
v

EvTv∗ , for some numerical constant K. (29)

Thus the upper bound on τ2 in Theorem 16, with the K from (29) in place
of 4, follows from the upper bound on the mean hitting time.

Proof of Theorem 16. We may suppose the values of H are all distinct
(by making arbitrarily small changes). The lower bound is easy. Choose z
such that Ĥ(z)−H(z) = H". Then for any v with H(v) ≥ Ĥ(z),

Pz(Xt = v) =
πv

πz
Pv(Xt = z) ≤ πv

πz
≤ exp(−θH")

and so Pz(H(Xt) ≥ Ĥ(z)) ≤ n exp(−θH"). This implies

EzT{v:H(v)≥Ĥ(z)} ≥
1
2n

exp(θH").

But the left side is a lower bound for EzTv∗ .
To argue the upper bound on the mean hitting time, let S be the set of

vertices v such that Ĥ(v) = H(v). For v ∈ S define

A<
v = {x : Ĥ(x) < H(v)}, A=

v = {x : Ĥ(x) = H(v)}, A≥
v = {x : Ĥ(x) ≥ H(v)}.

We shall argue that for v ∈ S

EvTA<
v
≤ ε−1n exp(θH") (30)

max
x∈A=

v

ExTA<
v ∪{v} ≤ ε−1n(|A=

v |− 1) exp(θH") (31)

These inequalities combine to show

max
x∈A=

v

ExTA<
v
≤ ε−1n|A=

v | exp(θH")

and the upper bound follows by the obvious iterative argument.
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To argue (30,31) it is convenient to use the weighted graphs - electrical
network interpretation. Assign edge (x, y) the weight wx,y = exp(−θH(x))px,y.
Fix v and consider this weighted graph truncated to A≥

v . The total weight
W satisfies

W ≤
∑

x∈A≥v

exp(−θH(x)) ≤ n exp(θ(H" −H(v))). (32)

Given x ∈ A=
v , there exists a path x = u0, u1, . . . , um = v in A=

v of
length l ≤ |A=

v | − 1. Each edge (u, u′) of this path has weight at least
ε exp(−θ max(H(u), H(u′))) ≥ ε exp(−θH(v)), and so the effective resis-
tance r(x, v) ≤ lε−1 exp(θH(v)). Thus by the commute interpretation of re-
sistance, the mean hitting time from x to v is at most r(x, v)W ≤ n(|A=

v |−
1)ε−1 exp(θH"). But this mean hitting time to v for the truncated chain is
clearly an upper bound for the mean hitting time to {v}∪A<

v in the original
chain, establishing (31). For the remaining inequality (30), given v )= v∗ ∈ S
there exists z ∈ A<

v with pv,z ≥ ε. So consider the graph truncated to A≥
v

together with the edge (v, z) with weight w0 = exp(−θH(v))pv,z. The mean
hitting time EvTz on the truncated graph is an upper bound for the desired
mean hitting time on the original graph. But xxx gives the first identity in

EvTz =
W

w0
≤ W exp(θH(v))ε−1

and then (30) follows from (32).
We now turn to the relaxation time. For the upper bound, write wx,y =

π(x)P (x, y). The bound from Chapter 4 yyy, crudely replacing the term
1(e∈γxy) by 1, becomes

τ2 ≤ 2
∑

x

∑

y

π(x)π(y)r(γx,y) (33)

where γx,y is a path from y that we are free to choose, and r(γ) is the
resistance of the path γ. Now wx,y ≥ ε min(π(x), π(y)) and so

r(γ) ≤ n

ε minz∈γ π(z)
. (34)

Now by definition of H" we may choose a path γ = γx,y such that maxz∈γ H(z) ≤
H" + max(H(x), H(y)) and so

min
z∈γ

π(z) ≥ exp(−θH") min(π(x), π(y)).
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Combining with (34),

r(γx,y) min(π(x), π(y)) ≤ ε−1n exp(θH").

Writing π(x)π(y) = max(π(x), π(y)) min(π(x), π(y)), we deduce from (33)
that

τ2 ≤ 2ε−1n exp(θH")
(

∑

x

∑

y

max(π(x), π(y))
)

and the double sum is at most 2n.
To get the lower bound, we apply the general inequality (Chapter 4 yyy)

τ2 ≥
π(A)π(Ac)
Q(A, Ac)

to the subset A ≡ {v : Ĥ(v) < Ĥ(z)}, where as before we choose z such that
Ĥ(z)−H(z) = H". Note that if x ∈ A, y ∈ Ac and P (x, y) > 0 then y must
be in B ≡ {v : H(v) ≥ Ĥ(z)}. Thus Q(A, Ac) = Q(A, B) = Q(B, A) ≤
π(B), and then

τ2 ≥ π(A)π(Ac)
π(B)

≥ 1
2

min
(

π(A)
π(B)

,
π(Ac)
π(B)

)

≥ 1
2

min
(

π(v∗)
π(B)

,
π(z)
π(B)

)

=
π(z)

2π(B)

≥ exp(θH")
2|B| .

xxx interesting example not available
xxx snakes; bound in terms of rel time of contour subgraphs.
xxx intersting math questions about H with no local minima, but not

applied
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