1 A special aggregation-fragmentation process

Consider the state space S, = {m = (m;) : m; > 0,3, jm; = n}. Picture
a state as a partition of n items into clusters, with m; clusters of size j,
1 < j < n. Picture each cluster as a linear polymer, with j items linked
by j — 1 edges. Fix a parameter 0 < 3 < 0o, and define a continuous-time
chain (M(t)) on S,, as follows. Let each edge disappear at rate (3, splitting
a size-j (say) item into two items of sizes i and j — i, for some 1 <1i < j/2.
And for each distinct pair of clusters, of sizes i and j — i say, let them merge
into one cluster of size j (by creation of a linking edge) at rate 2/n. So the
transition rates are as follows. Write 67 for the unit vector 5f = 1(i:j).

m— m-—¢§ 46 4670 : rate 20m;, 1<i<j/2

(fragmentation) : rate fm;, i=j/2

m— m+6§ —§ 467 orate 2mymi_i/n, 1<i<j/2
(aggregation) : rate my(m; —1)/n, i=j/2.

Writing ¢(m) = }°; m; for the number of clusters in configuration m, it is
easy to check that the chain is reversible with stationary distribution

m(m) oc ()™ T 2y

In fact this model is a particular case of general reversible models of ag-
gregation and fragmentation: see Kelly [?] Chapter 8. We will use special
structure of this particular case to prove a bound on the relaxation time.

Proposition 1 For the aggregation-fragmentation chain (M(t)) specified

above,
(1—0(1))(B*+48)"? < < B! asn— .

Proof. Consider the following interacting particle process B(t) = (B;(t),1 <
i < n) on the edges of the n-cycle. Each edge can be in state 0 or state 1,
so the states are b = (by,...,b,) € C,, := {0,1}". The transition rates at
each edge are:

0—1 rate 3
1—0 rate S where s(b) := Zbi'

n
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This chain is reversible with stationary distribution

m(b) o< (Bn)*™)/(s(b) — 1)L

Now we can specify a function f : C,, — S, as follows. In a configuration
b, cut each edge in state 1. Let m; be the resulting number of connected
components with exactly j vertices, and let f(b) = (m;). We claim that the
chain on S,, induced by f (recall Chapter 4 section 6.1) from the interact-
ing particle process B(t) on C,, is precisely the aggregation-fragmentation
chain (M(¢)). The key fact is that the process (B;(t)) is exchangeable in
the edge-labels i. So conditional on f(B(¢)) = m, for fixed ¢t and m, the
blocks comprising m are in uniform random order. Thus if a particular edge
changes state from 1 to 0 at time ¢, the chance that it causes some size-i
block and some size-(j — i) block to join together equals %, where
b = B(t). Since there are s(b) edges in state 1 and each makes a transition
at rate (s(b) — 1)/n, the total rate of aggregation of size-i and size-(j — i)
blocks equals 2m;m;_;/n, as required. Verifying the other transition rates
is similar.

So the contraction principle (Chapter 4 section 6.1) says 1o < 7o, where
To is the relaxation time of the process B(t). We shall bound 7, by coupling.
Let D = {(b,b) : b € C,} be the diagonal in C,, x C), and let

D1 = {(b,b): b’ —b = for some edge e}
Dy = {(b,b):b —b=46— §¢ for some edges e, €'}.
We now specify a coupling (B(t),B’(t)) such that, from any initial states

(b,b’) € D1, the coupled process stays in Dy until entering DU Ds. Specify
the transition rates for the coupled process at each edge to be

(0,0) — (1,1) ; ratef

(0,1) — (1,1) : ratef

(1,1) — (0,0) rate (s(b) —1)/n
(1,1) — (1,0) rate 1/n.

Note that the coupled process exits D at rate 3+ (s(b)—1)/n > 3, We next
specify a coupling (B(¢),B’(t)) such that, from any initial states (b,b’) €
D>, the coupled process stays in Do until entering D. In this coupling, if e, €’
are the initially unmatched edges, then the other edges remain matched and
we specify that when one of the unmatched edges in B(¢) makes a transition



then the other unmatched edge in B/(¢) makes the same transition. So the
process becomes coupled at rate 23 + 2(s(B(t)) — 1)/n > 2.

Combining the two couplings, it is easy to deduce from the coupling
inequality that for any (b,b’) € D1 U Dy

|1Po(B(t) € ) = Po(B(t) € )| = O(e™ ") as t — oo

for any ¢ > 0. Using the triangle inequality this extends to any (b,b’) €
C,, x C,, and so

1Po(B(t) € -) = m(-)|| = O(e~P=").

So by the characterization of relaxation time as asymptotic rate of conver-
gence to stationarity, (Chapter 4 Lemma yyy; currently sitting as Lemma 16
of Chapter 13), we have 7o < 1/(8+¢) and the upper bound in Proposition
1 follows.

The process s(B(t)) is clearly the continuous-time birth-and-death chain
(Q¢, say) on states {1,2,...,n} with transition rates

i—i+4+1: rate B(n—i); i—i—1: ratei(i—1)/n.

One can check that in the aggregation-fragmentation process M(¢) the num-
ber ¢(M(t)) of clusters also evolves as this birth-and-death chain @Q;. Ap-
pealing again to the contraction principle, the relaxation time 75 for @ is
a lower bound for the relaxation time 79 for M(t). So to prove the lower
bound in Proposition 1 it is enough to prove

> (1 —o(1))(B*+48) "% as n — co.

From the explicit formula for the stationary distribution 79 of Q; it is
straightforward to show that 7 is asymptotically Normal(nu, no?) as n —

00, where
p=\02/4 +8-05/2, o%=pl—p)/2-p

and p is the positive solution of u? = B(1 — u). We apply the extremal
characterization with test function f(¢) := ¢ and find

var,f ~ no
EUS) = S m0alii 1) ~ giee 1 ~ B~ g where i* 2= ]
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The extremal characterization now implies

2

>(1- o(l))ﬁ.

Finally,
i p .
Bl — p) = 32— ) (definition of o)
1
= Fog, (use quadratic satisfied by 4 to check u(8 +2u) = 8(2 — 1))
u
= (P + 4/8)_1/2 (definition of p).
n

Remarks. From the stationary distribution of B(t) we see that the size
of a typical cluster has geometric(u) distribution, asymptotically.

Our arguments continue to apply in the setting where 8 = 3, ~ b/n,
say, though here the upper and lower bounds on 7 have orders n and n'/2.
Here the size of a typical cluster is geometric(p = 6,1/ 2) and it gets split at
rate 3,/ = order n~42, suggesting that the relaxation time should indeed
be order n'/2. The coupling analysis we gave is very crude in this setting
and can perhaps to improved. In particular, since the exit rate from Dy is
typically about § + p one might hope to get 1/(8 + p) as an upper bound
for 19, and this would be the same order of magnitude as the lower bound.

2 Example: horizontally convex polyominoes

Here we give an elementary, but non-obvious, example of a reversible chain
arising in the study of the uniform distribution on a combinatorial set.

Consider horizontally convex polyominoes, which we’ll abbreviate to poly-
ominoes. A size-n polyomino is obtained by breaking unit cells {1,2,...,n}
into consecutive blocks, and placing each block on top of the previous block,
where “on top” means that some component of the current block is imme-
diately above some component of the previous block. The figure shows a
polyomino with n = 17.



