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GRAPHS AND ADJACENCY MATRICES

Undirected graphs on n
labeled vertices.

Regular: degree d .

Adjacency matrix = n × n
symmetric matrix.

Sparse - d � n.
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MODELS OF RANDOM REGULAR GRAPHS

The permutation model: G(n,2).
π - random permutation on [n].
2-regular graph:
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THE PERMUTATION MODEL G(n,2d)

π1, . . . , πd iid uniform permutations. Superimpose.
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RANDOM MATRIX THEORY

A GOE is a square random matrix
with

upper triangular entries
chosen iid N(0,1);
symmetric.
Minor=principal submatrix,
also GOE.


−0.6 0.7 0.1 0.3

0.7 2.1 2.5 − 0.1
0.1 2.5 −2.2 1.1
0.3 − 0.1 1.1 0.4


A sample of a 4× 4 GOE matrix
and its 3× 3 minor.
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GOE VS. RANDOM GRAPHS

Adjacency matrices are not GOE (or, Wigner).
Rows are sparse; no independence.

However, for large d , approximately GOE.
Eigenvalue distribution (McKay ’81, Dumitriu-P. ’10,
Tran-Vu-Wang ’10)
Linear eigenvalue statistics (Dumitriu-Johnson-P.-Paquette ’11)
Simulations.
Not Erdős-Rényi, e.g. connected.
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EIGENVALUE FLUCTUATIONS

W∞ - GOE array.
Wn - n × n minor. E-values {λn

i }.
Linear eigenvalue statistics

tr f (Wn) :=
n∑

i=1

f
(

λn
i

2
√

n

)
.

(Classical Theorem) If f is analytic

lim
n→∞

[tr f (Wn)− E tr f (Wn)] = N
(
0, σ2

f
)
.



DYNAMICS OF EIGENVALUE FLUCTUATIONS

(A. Borodin ’10)

GOE array W∞(s) in time with entries as Brownian motions.
Choose (ti , si , fi , i = 1, . . . , k). Polynomial fi ’s.

lim
n→∞

(
tr fi

(
Wbntic(si)

)
− E tr fi (·) , i ∈ [k ]

)
= Gaussian.

Mean zero. Covariance kernel?

Fix s. Limiting Height Function is the Gaussian Free Field.
Nontrivial correlation across s.
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MAIN QUESTION

What dynamics on random regular graphs
leads to similar eigenvalue fluctuations

in dimension × time?



Description of the dynamics



DYNAMICS IN DIMENSION

(Dubins-Pitman) Chinese restaurant process on d permutations.
i th customers arrive simultaneously. Sits independently.

Let Ti = Exp(i), i ∈ N,

nt = max

{
m :

m∑
i=1

Ti ≤ t

}
.

G(t ,0) := G(nt ,2d), for 0 ≤ t ≤ T .
dimension t ; time 0.



DYNAMICS IN TIME

Fix T large. d permutations on n labels.
Run random transposition MC simultaneously.

Any
(

n
2

)
transposition selected at rate 1/n.

Successive product on left.

Superimpose - G(T , s) for s ≥ 0.
Delete labels successively:

G(T + t , s), t ∈ [−T ,0], s ≥ 0.



CYCLES AND EIGENVALUES

Nk - # k -cycles in the graph G(n,2d).
As n→∞, (Nk , k ∈ N) - linear eigenvalue statistics.
In fact

2kNk ≈ tr (Tk (G(n,2d))) .

(Tk , k ∈ N) - Chebyshev polynomials of first kind.



Dynamics of cycles in dimension



GROWTH OF A CYCLE

(Johnson-P. ’12) Existing cycles grow in size.
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FIGURE : Vertex 6 is inserted between 2 and 3 in π1.



BIRTH OF A CYCLE

1 2 3 4 5π2 π1 π2 π1

π1 = (2 3 1)(4 5)
π2 = (2 1 3 4 5)

1 2 3 4 5

6

π2 π3 π2 π1

π1 π2

π1 = (2 3 1 6)(4 5)
π2 = (2 1 3 4 6 5)

FIGURE : A cycle forms “spontaneously”.



CYCLE COUNTS

C(T )
k (t) = # k -cycles in G(T + t ,0), t ∈ [−T ,0].

Non-Markovian process in t , with T fixed.

(C(T )
k (t), k ∈ N, t < 0) converges as T →∞.

Limiting process (Nk (t), k ∈ N, t ≤ 0) is Markov.

Running in stationarity.
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THE LIMITING PROCESS

(Johnson-P. ’12) In the limit:
Existing k -cycles grows to (k + 1) at rate k .
New k -cycles created at rate µ(k)⊗ Leb.
Here:

µ(k) =
1
2
[a(d , k)− a(d , k − 1)] , k ∈ N, a(d ,0) := 0,

where

a(d , k) =

{
(2d − 1)k − 1 + 2d , k even,
(2d − 1)k + 1, k odd.



POISSON FIELD OF YULE PROCESSES

k
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x

Poisson point process χ on N× (−∞,∞). Intensity µ⊗ Leb.

For (k , y) ∈ χ, start indep Yule processes (Xk,y (t), t ≥ 0).
Define

Nk (t) :=
∑

(j,y)∈χ∩{[k ]×(−∞,t]}

1 {Xj,y (t − y) = k} .
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INVARIANT DISTRIBUTION

(
C(T )

k (t), k ∈ N, t ∈ (−∞,0]
)
−→ (Nk (t), k ∈ N, t ∈ (−∞,0]).

Marginal distribution:

(Nk (t), k ∈ N) ∼ ⊗Poi
(

a(d , k)
2k

)
.

Dumitriu-Johnson-P.-Paquette ’11
Bollobás ’80, Wormald ’81.
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CYCLES IN TIME
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FIGURE : A cycle that vanishes due to transposition (1, j), j > 6.

Random transpositions make short cycles vanish or appear at
random.
Other effects are of negligible probability.



THE JOINT LIMITING PROCESS

(Ganguly-P. ’14) Take limit as T →∞.
Fix t < 0. Consider in s ≥ 0.
(Nk (t , ·), k ∈ N) - independent birth-and-death chains.
Joint convergence to a Poisson surface:(

C(T )
k (t , s), k ∈ N, t ≤ 0, s ≥ 0

)
−→ (Nk (t , s)) .

Yule process in dimension, birth-and-death chains in time.
Markov field. Stationary along axis. Joint law by intertwining.



Diffusion limit



LARGE DIMENSION, SMALL TIME

Take centered+scaling limit as d →∞ and

t = −T0 + u, s = ve−T0 , T0 →∞, u ≥ 0, v ≥ 0.

Large dimension; very small time.
Imagine observing random transposition chain acting on infinite
symmetric group.



ORNSTEIN-UHLENBECK

THEOREM (JOHNSON-P. ’12, GANGULY-P. ’14)
Joint convergence to Gaussian field:

(2d − 1)−k/2 (2kNk (−T0 + u, ve−T0)− E (·)
)
−→ (Uk (u, v)) .

Uk (·, ·) - continuous Gaussian surfaces, independent among k.
Infinite-dimensional O-U surface. Marginally N(0, k/2).
In dimension and time (Uk ) time-changed stationary O-U:

dUk (t , ·) = −kUk (t , ·)dt + kdWk (t), t ≥ 0.



COMPARISON WITH WIGNER

Recall 2kNk ≈ tr (Tk (·)).
Allows to compute covariances of polynomials linear eigenvalue
statistics.
Same as GOE. A diffusion dynamics on the Gaussian Free Field.



Thank you Jim for all the beautiful math and
happy birthday.


