Various applications of restricted Boltzmann machines for bad quality training data

Maciej Zięba

Wroclaw University of Technology

20.06.2014
Motivation

Big data - 7 dimensions\(^1\)

- **Volume**: size of data.
- **Velocity**: speed, displacement of data.
- **Variety**: diversity of data.
- **Viscosity**: measures the resistance to flow in the volume of data.
- **Virality**: measures how fast data is distributed unique and shared between nodes in a network (e.g. the Internet).
- **Veracity**: trust and quality of the data.
- **Value**: what is the added value that Big Data should bring?

\(^1\)According to ATOS company
Motivation

Big data - 7 dimensions

- **Volume**: size of data.
- **Velocity**: speed, displacement of data.
- **Variety**: diversity of data.
- **Viscosity**: measures the resistance to flow in the volume of data.
- **Virality**: measures how fast data is distributed unique and shared between nodes in a network (e.g. the Internet).
- **Veracity**: trust and quality of the data.
- **Value**: what is the added value that Big Data should bring?

\(^1\) According to ATOS company
Veracity of Data

Typical problems with data - training context

- **Imbalanced data problem.** One class dominates another in the training data.

- **Noisy labels problem.** Some of the examples in training data contain incorrectly assigned labels.

- **Missing values issue.** Values of some features are unknown.

- **Unstructured data.** The data is represented in unprocessed form: images, videos, documents, XML structures.

- **Semi-supervised data.** Some portion of training data is unlabelled.
Veracity of Data

Typical problems with data - training context

- **Imbalanced data problem.** One class dominates another in the training data.

- **Noisy labels problem.** Some of the examples in training data contain incorrectly assigned labels.

- **Missing values issue.** Values of some features are unknown.

- **Unstructured data.** The data is represented in unprocessed form: images, videos, documents, XML structures.

- **Semi-supervised data.** Some portion of training data is unlabelled.
Methods

Restricted Boltzmann Machines (RBM)

- **RBM** is a **bipartite Markov Random Field** with **visible** and **hidden** units.
- The **joint distribution** of visible and hidden units is the **Gibbs** distribution:

\[
p(x, h|\theta) = \frac{1}{Z} \exp\left(-E(x, h|\theta)\right)
\]

- For **binary visible** \(x \in \{0, 1\}^D\) and **hidden** units \(h \in \{0, 1\}^M\) the energy function is as follows:

\[
E(x, h|\theta) = -x^\top Wh - b^\top x - c^\top h,
\]

- Because of **no visible to visible**, or **hidden to hidden** connection we have:

\[
p(x_i = 1|h, W, b) = \text{sigm}(W_i h + b_i)
\]

\[
p(h_j = 1|x, W, c) = \text{sigm}((W_j)^\top x + c_j)
\]
Methods
RBM for imbalanced data

- Train the model on examples from minority class by application of MLL (scaled):

\[
\frac{1}{N} \log \left(p(\mathcal{X}_{n=1}^{N} | \theta) \right) = \frac{1}{N} \sum_{n=1}^{N} \log \left(\sum_{h} p(\mathbf{x}_n, h | \theta) \right)
\]

- Generate artificial examples \(\mathcal{X}_{m=1}^{M} \) using Synthetic Oversampling Technique (SMOTE).

- For each of the newly created example \(\mathbf{x}_m \) apply Gibbs sampling:

\[
\mathbf{h}_m \sim p(\mathbf{h} | \mathbf{x}_m, \theta) \\
\mathbf{\tilde{x}}_m \sim p(\mathbf{x} | \mathbf{h}_m, \theta)
\]

- Label newly created example \(\mathbf{\tilde{x}}_m \) and store in training data.
Methods
RBM for imbalanced data - example

SMOTE procedure:

A

B
Methods
RBM for imbalanced data - example

SMOTE procedure:

Generating artificial examples on MNIST data:

EXAMPLE 1
EXAMPLE 2
SMOTE
SMOTE RBM
RBM for other raw data issues

- Problem of **missing values**.
 - RBM is trained for **each of the classes** separately.
 - Gibbs sampling is applied to **uncover** unknown values.
 - RBM models are iteratively **updated** while new training **example is completed**.

- Problem of **noisy labels**.
 - RBM is trained for **each of the classes** separately.
 - Each of the trained models is used as an **oracle** to detect **uncorrected labelled data**.
 - **Reconstruction** error is used to determine **unlabelled examples**.

- Problem of **unstructured data**.
 - RBM is used as domain-independent **feature extractor** that transforms raw data into **hidden units**.