Pattern avoiding permutations and Brownian excursion

Douglas Rizzolo
(joint work with Christopher Hoffman and Erik Slivken)

Department of Mathematics
University of Washington
Supported by NSF Grant DMS-1204840

Combinatorial Stochastic Processes
2014
Definition
A permutation σ is said to be 231-avoiding if there does not exist $i < j < k$ such that $\sigma(k) < \sigma(i) < \sigma(j)$.

- $\sigma_1 = 3754621$ is NOT 231-avoiding.

- $\sigma_2 = 2154367$ is 231-avoiding.
231-avoiding permutations

Definition
A permutation σ is said to be **231**-avoiding if there does not exist $i < j < k$ such that $\sigma(k) < \sigma(i) < \sigma(j)$.

- $\sigma_1 = 3754621$ is **NOT** **231**-avoiding.
- $\sigma_2 = 2154367$ is **231**-avoiding.
- Knuth ('69): The number of **231**-avoiding permutations of size n is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$
231-avoiding permutations

- Miner, Pak 2013 – *The shape of random pattern avoiding permutations*.
- Janson, Nakamura, Zeilberger 2013 – *On the asymptotic statistics of the number of occurrences of multiple permutation patterns*.
- Janson 2014 – *Patterns in random permutations avoiding the pattern 132*.
- Madras, Pehlivan 2014 – *Structure of Random 312-avoiding permutations*.
Fixed Points

Theorem (Montmort 1708)

Let σ_n be a uniformly random permutation of $\{1, 2, \ldots, n\}$. The number of fixed point of σ_n converges in distribution to a Poisson(1) random variable as $n \to \infty$.

Elizalde '04, '12, Elizalde and Pak '04 give detailed combinatorial results on fixed points of pattern avoiding permutations.

Theorem (Miner-Pak '13)

Let σ_n be a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$. The expected number of fixed points of σ_n is asymptotic to $\frac{\sqrt{\pi}}{2} \left(\frac{1}{4} n\right)^{-1/4}$ as $n \to \infty$.

Douglas Rizzolo
Theorem (Montmort 1708)

Let σ_n be a uniformly random permutation of $\{1, 2, \ldots, n\}$. The number of fixed point of σ_n converges in distribution to a Poisson(1) random variable as $n \to \infty$.

Elizalde ’04, ’12, Elizalde and Pak ’04 give detailed combinatorial results on fixed points of pattern avoiding permutations.
Theorem (Montmort 1708)

Let σ_n be a uniformly random permutation of $\{1, 2, \ldots, n\}$. The number of fixed point of σ_n converges in distribution to a Poisson(1) random variable as $n \to \infty$.

Elizalde ’04, ’12, Elizalde and Pak ’04 give detailed combinatorial results on fixed points of pattern avoiding permutations.

Theorem (Miner-Pak ’13)

Let σ_n be a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$. The expected number of fixed points of σ_n is asymptotic to $\frac{\Gamma(1/4)}{2\sqrt{\pi}} n^{1/4}$ as $n \to \infty$.
Theorem (Hoffman-R-Slivken ’14)

Let σ_n be a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$.

Let $\text{Fix}_n(t) = \# \{ i \in \{1, 2, \ldots, [t]\} : \sigma_n(i) = i \}$.

Then

$$
\left(\frac{1}{n^{1/4}} \text{Fix}_n(nt) \right)_{t \in [0, 1]} \xrightarrow{d} \left(\frac{1}{2^{7/4} \sqrt{\pi}} \int_0^t \frac{1}{e^{u^{3/2}}} \, du \right)_{t \in [0, 1]},
$$

where $(\exists_t)_{t \in [0, 1]}$ is standard Brownian excursion.
Theorem (Hoffman-R-Slivken ’14)

If n is large and σ_n is a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$ then, appropriately rescaled,

$$(i - \sigma_n(i))_{1 \leq i \leq n}$$

almost looks like a Brownian excursion.
Theorem (Hoffman-R-Slivken '14)

If n is large and σ_n is a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$ then, appropriately rescaled,

$$(i - \sigma_n(i))_{1 \leq i \leq n}$$

almost looks like a Brownian excursion.
Theorem (Hoffman-R-Slivken ’14)

If n is large and σ_n is a uniformly random 231-avoiding permutation of $\{1, 2, \ldots, n\}$ then, appropriately rescaled,

$$(i - \sigma_n(i))_{1 \leq i \leq n}$$

almost looks like a Brownian excursion.

Figure: $i - \sigma_n(i)$ for “good” values of i.
Theorem (Hoffman-R-Slivken '14)

If \(n \) is large and \(\sigma_n \) is a uniformly random 231-avoiding permutation of \(\{1, 2, \ldots, n\} \) then, appropriately rescaled,

\[
(i - \sigma_n(i))_{1 \leq i \leq n}
\]

almost looks like a Brownian excursion.

Figure: An example for \(n = 10000 \)
A bijection between trees with $n + 1$ vertices and 231-avoiding permutations of $\{1, 2, \ldots, n\}$.
231-avoiding permutations

A bijection between trees with \(n + 1 \) vertices and 231-avoiding permutations of \(\{1, 2, \ldots, n\} \).
231-avoiding permutations

A bijection between trees with $n + 1$ vertices and 231-avoiding permutations of $\{1, 2, \ldots, n\}$.

$$\sigma_t(2) = 2 + 5 - 1 = 6$$

$$\sigma_t(i) = i + |t_v_i| - \text{ht}(v_i)$$
The Good Points

\[i - \sigma_t(i) = \text{ht}(v_i) - |t_{v_i}| \]