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Abstract
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Our paper had several minor misstatements and several somewhat incorrect proofs,
which we correct in this note.

(i) The statement in the introduction, “Unimodularity of a probability measure µ

on rooted graphs is equivalent to the property that a reversible stationary distribution
for this chain is given by the root-degree biasing of µ . . . ”, is incorrect. Unimodularity
implies this reversibility, but is not implied by it. There is a similar loss of precision
at the beginning of Section 4. The correct statement is the following: Let µ′(G, o) :=
degG(o)µ(G, o). Then unimodularity is equivalent to the distribution of the isomorphism
class of (G,w0, w1) being the same as that of (G,w1, w0) when (G,w0) has the distribution
µ′ and w1 is a uniform random neighbor of w0.

(ii) The proof of Theorem 3.1 was slightly incorrect. Instead of taking u, v in the
same orbit, they should be any two vertices. After (3.5) is proved, one should deduce
unimodularity from taking them in the same orbit. But they should still be general in
order to deduce (3.4).

(iii) Preceding Corollary 4.3, A was called the infinitesimal generator, but it is the
negative of the infinitesimal generator.

(iv) Formula (4.4) of Theorem 4.9 (which was changed inadvertently by the publisher
from Proposition 4.9) is incorrect. The correct formula is

1− 2

deg(µ)
.
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This makes the last sentence of the published version of Theorem 4.9 obvious. The
proof used stationarity of simple random walk, but mistakenly used µ as the stationary
measure. Instead, of course, it is the degree-biased measure, σ. Formula (4.4) with σ in
place of µ results, which then simplifies to the above.

(v) The proof of Proposition 4.10 has a slight error: when 1/ε occurs, it should be ε.

(vi) The proof of Theorem 5.1 was not complete. In fact, the reduction to bounded
weights is not needed since the inequality Trf(S) ≤ Trf(T ) holds for bounded increasing
f : R → R and 0 ≤ S ≤ T that are Tr-measurable operators affiliated to Alg. This is
proved like Lemma 4 of Brown and Kosaki (1990). Definitions are as follows. A closed
densely defined operator is affiliated with Alg if it commutes with all unitary operators
that commute with Alg. An affiliated operator T is called Tr-measurable if for all ε > 0,
there is an orthogonal projection E ∈ Alg whose image lies in the domain of T and
Tr(E⊥) < ε. The Laplacian A is Trµ-measurable because if En denotes the orthogonal
projection to the space of functions that are nonzero only on those (G, o) where the sum
of the edge weights at o is at most n, then limn→∞Tr(E⊥n ) = 0 and ‖AEn‖ ≤ 2n.

An alternative way to prove Theorem 5.1 is to modify the claim of the second
paragraph that P (i)

t (o, o) = limn→∞ P
(i,n)
t (o, o) for i = 1, 2, which was, in fact, not

correct (see below). We claim instead that there is a set of probability 1 for which
P

(i)
t (o, o) = lim infn→∞ P

(i,n)
t (o, o) for i = 1, 2 and all t > 0 simultaneously, and also∫

P
(i)
t (o, o) dµi(G, o) = lim

n→∞

∫
P

(i,n)
t (o, o) dµi(G, o) (0.1)

for i = 1, 2. Of course, only (0.1) is needed to complete the proof of Theorem 5.1. Here,
the superscript n refers to replacing each edge weight by 0 when the sum of the weights
incident to its endpoints is larger than n (rather than what was described in the original
paper). To verify these claims, let

B(i,n)(x, y) :=

{
A(i,n)(x, y) if x 6= y,

A(i)(x, y) if x = y,

and let Q(i,n)
t (x, y) be the transition kernel for the minimal process corresponding to

the infinitesimal generator −B(i,n). Thus, when this process is at x, the rate of being
killed is A(i)(x, x) − A(i,n)(x, x), whereas the rate of moving is A(i,n)(x, x). An easy

coupling argument shows that P (i,n)
t (x, y) ≥ Q

(i,n)
t (x, y) and, because P

(i)
t also are

minimal processes, P (i)
t (x, y) = limn→∞Q

(i,n)
t (x, y). Putting these together for x = y = o,

we arrive at the inequality

P
(i)
t (o, o) ≤ lim inf

n→∞
P

(i,n)
t (o, o) (0.2)

for i = 1, 2 and all t > 0. By using Fatou’s lemma, we see that (0.1) implies that equality
holds in (0.2) a.s. for each t > 0 and hence for all t ∈ Q+ simultaneously. Since P (i)

t (o, o)

and P (i,n)
t (o, o) are continuous and decreasing in t, we obtain that equality holds in (0.2)

a.s. for all t > 0 simultaneously.
We now prove (0.1). Let En denote, as before, the orthogonal projection to the space

of functions that are nonzero only on those (G, o) where the sum of the edge weights at
o is at most n. Then A(i,n)En = A(i)En for all n and i = 1, 2. Since limn→∞Tr(E⊥n ) = 0, it
follows that limn→∞A(i,n) = A(i) in the measure topology for each i = 1, 2; see Definition
1.5 of T. Fack and H. Kosaki (1986), Generalized s-numbers of τ -measurable operators,
Pacific J. Math. 123, 269–300. For s ∈ [0, 1] and a Tr-measurable operator T ≥ 0 with
spectral resolution ET , define

ms(T ) := inf
{
λ ≥ 0 ; Tr

(
ET (λ,∞)

)
≤ 1− s

}
;
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see Remark 2.3.1 of Fack and Kosaki (1968). A proof similar to that of Corollary 2.8 of
Fack and Kosaki (1968) shows that for bounded monotone f : R→ R, we have

Tr
(
f(T )

)
=

∫ 1

0

f
(
ms(T )

)
ds . (0.3)

Since A(i,n) ≤ A(i), we have ms

(
A(i,n)

)
≤ ms

(
A(i)

)
by Lemma 2.5(iii) of Fack and Kosaki

(1968). Therefore, limn→∞ms

(
A(i,n)

)
= ms

(
A(i)

)
by Lemma 3.4(ii) of Fack and Kosaki

(1968). Now use f(λ) := e−tλ in (0.3) to obtain limn→∞Tr
(
e−tA

(i,n))
= Tr

(
e−tA

(i))
, which

is the same as (0.1).
For a counterexample to the claim in the proof of Theorem 5.1, but not in the context

of a unimodular probability measure, consider the following birth and death chain: Let
the weight on (k, k + 1) be ak, where a0 := 1 and ak+1 := 2ak . For the nth approximation,

set a(n)k := an1{k≤n}. The original chain explodes, whereas the approximations are
converging to the process “reflecting at infinity.” One can describe the original chain as
“absorbing at infinity.”

(vii) The sentence after Proposition 6.3, “Recall that in Section 10 we have added
a second independent uniform [0, 1] coordinate to the edge marks to form µB ∈ U , the
standard coupling of Bernoulli percolation on µ,” should be replaced by the following:
“More generally, we’d like to couple together all these Bernoulli percolation measures.
We do this by using the canonical networks. We wish the second coordinates to be
uniformly distributed on [0, 1] and independent (but the same at each endpoint of a given
edge). For 0 ≤ i < j, let Ui,j be i.i.d. uniform [0, 1] random variables. Then for each
canonical network (G, 0) ∈ G∗ and for each 0 ≤ i < j, change the mark at each endpoint
of the edge between i and j, if there is an edge, by adjoining a second coordinate equal
to Ui,j . Let µB be the law of the resulting network class when [G, 0] has law µ. It is clear
that µB is unimodular when µ is. We refer to µB as the standard coupling of Bernoulli
percolation on µ. In the future, we shall not be explicit about how randomness is added
to random networks.”

(viii) The proof of Proposition 7.1 was not quite correct. Here is a correct version:

Proof. We begin by proving part of the third sentence, namely,

every weak limit point of 〈WUSF(µn)〉 stochastically dominates WUSF(µ) . (0.4)

Given a positive integer R, let USTR(µ) be the uniform spanning tree on the wired ball
of radius R about the root. (Although USTR(µ) /∈ U , this will not affect our argument.)
Identify the edges of the wired ball of radius R with the edges of the ball itself. By
definition, we have USTR(µ) ⇒ WUSF(µ) as R → ∞. Clearly, USTR(µn) ⇒ USTR(µ) as
n→∞. Furthermore, the intersection of WUSF(µn) with the ball of radius R stochasti-
cally dominates USTR(µn) by a theorem of Feder and Mihail (1992). Therefore, every
weak limit point of 〈WUSF(µn)〉 stochastically dominates USTR(µ) and therefore also
WUSF(µ).

Suppose now that µ is concentrated on recurrent networks. If µ is concentrated on
networks with bounded degree, then so is WUSF(µ), and the latter is also concentrated
on recurrent networks by Rayleigh’s monotonicity principle. By Theorem 4.9, the claim
of the first sentence follows. If µ has unbounded degree, then let µn be the law of the
component of the root when all edges incident to vertices of degree larger than n are
deleted. Clearly µn ∈ U and µn ⇒ µ. We have shown that deg(WUSF(µn)) = 2, so that
(0.4) and Fatou’s lemma yield that deg(WUSF(µ)) ≤ 2, whence equality results from
Theorem 6.1.
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Suppose next that µ is concentrated on transient networks. Then the proof of Theorem
6.5 of BLPS (2001) gives the same result.

Finally, if µ is concentrated on neither recurrent nor transient networks, then we may
write µ as a mixture of two unimodular measures that are concentrated on recurrent or
on transient networks and apply the preceding.

This proves the first sentence. The second sentence is a special case of the third, so
it remains to finish the proof of the third. By Fatou’s lemma and Theorem 6.1, after what
we have shown, we know that all weak limits of 〈WUSF(µn)〉 have expected degree 2, as
does WUSF(µ). Since all such weak limits lie in U , (0.4) shows that all weak limits are
equal.
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