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Abstract

Let X,,t = 0 be any continuous-time Markov process on states 0,1,...,n
where Xg = n and Ty is the time to reach 0 which is absorbing. We prove that Ty
is most nearly constant in the sense of minimizing the coefficient of variation
var(Tq) / (E Tp)? over all transition matrices P;; and exponential delay parameters
A; in each state when P;;_; = 1,7 =n,n-1,...,1 and A; = constant. The
latter chain is Erlang’s process on r fictitious states and has been used to show that
an arbitrary semi-Markov process can be approximated by a Markov process. It
has been a long-open problem since the work of Kendall, Cox, and others to try to
improve on Erlang’s scheme by generalizing the transition structure of X, i.e.
adding loops, twists, and turns in order to make the overall waiting time bave
smaller coefficient of variation. We destroy this hope by showing at last that
Erlang’s original method is not improvable.

Our proof is simple and elegant and is a nice example of the power of
martingales; it secms intractible without them.

§1. The inequality

R. P. Kurshan [4] has introduced the notion of tensor product of Markov
processes X; and X, which (in a special case) is the ordinary product. The
product of X; on states iy € Iy, k = 1,2 has states (i1,i2) €el; X I3 and if 7, is
the exit time from state i, of Xi, ¥ = 1,2 then a transition is made at time
7 = min(7y, T3) from (iy,i3) to (j;, i) if 1y < Ty o0rto (i¥,j2) if 1, > 7;. Here

i is the new state of X;. This product construction results in a Markov process,
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but if X, are only semi-Markov processes (i.e. if the delays in each state { are not s
exponential but follow some distribution F;) then this product construction fails in
general to be even semi-Markov. Thus to perform the calculations needed to
analyze the behavior of first passage times for a product of semi-Markov processes
unwieldy integral equations must be solved. To avoid these it is {apparently)
required to first approximate each component semi-Markov process by a Markov
process. Kurshan [4] needs to perform simulations and since his component state
spaces are rather large, he has to do this Markov approximation very efficiently,
i.e. he wants to use a minimum number of fictitious states. In [4] the non-
exponential semi-Markov delay 8 in each state is well-modelled by a so-called

delayed exponential, where 8 and A depend on the state,
(1.1) POz =e BN 1290

so that the process waits a fixed time 5 and then an exponential time with mean X.
Kurshan’s definition of tensor product allows more generally for the transition of
X, to also depend on the state of X,. But the special case we have mentioned

where it does not already illustrates the problem and the need to preserve

Markovianness, i.e. to have exponential delay times. This is no doubt similar to
the reasoning that prompted Erlang and others to invent Markov chains

approximating semi-Markov ones.

There is an extensive literature on approximating semi-Markov processes by
Markov processes including [1-5]. Neuts [5] gives a survey and extended
discussion of algorithms for choosing a so-called ‘“‘phase type” distribution, which

is a distribution of the delay time of a Markov process on a fixed number n+1 of
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states until absorption in one of the states, to approximate an arbitrary delay

distribution.

Erlang [2] gave a simple class of (phase type) delay distributions by considering
a Markov process X, ¢t = 0 on states 0,1, ..., n where the exponential delay in
state i > O has fixed mean X and the process moves deterministically with constant

expected delay through the states,
(1.2) Xo=n , P11 =1, i=n,...,1.

The time T until absorption at 0 then has Laplace transform

dr)” 1 )"
3 Ee 1o = x —5 —tx Q1| .
(1 ) e [J:J Fa e h 1 + AS
. 3 = . .
since Tg = " S ¢ where ¢; are i.i.d unit exponentials so the mean and variance
i=1
of T are
(1.4) ETo =n\ , var(To) = n(n+1A? = (n\)? = n)?

and the coefficient of variation is

T - (\N?
s var ( 02) _ n(n+Dr - (n\)” _ 1
(ETy) (n\) "

Since (1+8s/n)™" =~ e~ % as n ~o, and e~ ¥ is the Laplace transform of the
constant 5, we see that the convergence as n ~ < of T to a fixed delay & could be
achieved with A = 8/n but the convergence of Erlang’s scheme (to the B&-
distribution at Tg) is rather slow, only O (1/n) since var(To) = 82/n. Nevertheless
we will see that this is best possible. Note that the question of choosing a
fictitions semi-markov chain to minimize the coefficient of variation of the delay-

time is implicit in [1,3,5] and is very natural.
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To approximate the delayed exponential (1.1) with Erlang’s method one might 1
first generate an approximate fixed delay 8 with n fictitious states and then when
the process reaches state 0 after time T one more state would be entered after an
exponential delay with mean N. Thus n+1 fictitious states would be needed for
each state of the original semi-Markov process for each component. It may be

that there is no better way to approximate a delayed exponential.

Can the delayed exponential be approximated more efficiently by using a more
involved P;; matrix with varjable \; as suggested by the extensive literature and
discussion in [5]? We don’t know the answer to this question. Certainly there are
distributions which are efficiently approximated by using more general phase-type
distributions than the simple Erlang ones (eg. the delay of any phase-type
distribution is an exact realization of itself!). However, fixed delays are important
in themseives for the general theory. It is only through the use of mixtures of
fixed delays (and Erlang distributions) that it can be shown [1] that any
distribution ¢an be approximated by phase-type distributions. The fact that a fixed
delay or a delayed exponential is difficult to approximate with a phase-type
distribution has been observed [5, p. 79]. Kendall [3] and Cox [1] as well as
Neuts [5] seem ail to be unable to quantify this statement in terms of minimizing
the coefficient of variation over phase type distributions. Although coefficient of
variation is discussed by the above authors, apparently they never actually

conjectured or explicitly discussed the following result.

Theorem. Let n be fixed and consider the class of all phase distributions, i.e. those

of the delay times T to reach state 0 by a Markov process X,,t = 0, on states
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0,1, ..., nstarting in state n with arbitrary transition matrix P;; and exponential

delay with mean A; in state i. Then the coefficient of variation of Ty,

Tvar (To) 1

1.6 = =
(16 (ETg)? n

with equality if and only if X is the Erlang process (1.2).

§2. Proof of the theorem

We assume that X,, ¢t =0 is a Markov process on states 0,1,...,n,

absorbing at O, starting at n. Thus set Ty = time to hit state 0 and
(2.1) Y, = A(X,) + min{t, Tg) — (Xg), t = 0
where h is the expected time to hit state O starting in state i,

(2.2 h(iy = E;Tq -

Since for i # 0, E[A(X,2) — h(X) | X; = i] = —8 + 0(d) as § - 0, it is easy 1o
show that ¥,,t = 0 is a martingale (with respect to the o-flelds generated by X).

Now let §, be the sum of the squares of the jumps of ¥ up to t,

(2.3) S,= 3 (¥, - Y-)? .
s<t

Then

(2.4) EY} = ES,

since

(2.5) E(Y,4, — Y)? = EY?2,, — 2FY,,,Y, + EY} = EY?},, — EY?

-
and so if 0 <1y <...<t, <1, EY?= EY @, — Y,j_l)2 -~ ES, as the partition
j=1
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refines since

(2.6) (Yi4u — Y,)2 = O(uz) as u — 0 unless there is a jump in (7, t+u] .
Since

{2.7) Yr, =Ty — E;To

]

we have from (2.7), (2.4}, and (2.3)

(2.8) var(To) = EY}, = ESr, = E3, (h(X;) — h(X,_))* .

5
Now consider a permutation ¢ of {0,1,...,n} such that h(c(i)) is non-
decreasing. Let n” =o”!(n). We assert that, for any path
n=1ig,i1,...,00 =0,
(2.9) S () — kG- = z (h(o (D)) — k(@ (=1 .

u=t i=1
For let I, = {j: min(o™1(i,), o G, —1)) <Jj = max(c~1(i,), o7 (i, -1))}. Then

(i) = (=12 = 3 (e () = k(e G—1)?

Jel,

by monotonicity. A moment’s thought shows UI, contains {1,..., n"}, and

{2.9) follows.

Now

var(To) = 3 (h(o (i) — k(e (=D)? by (2.8) and (2.9)
i=1

= (S k(o (i) — k(o (i—D)? = by Schwarz's inequality

i=1 n

1 1
= h(n) = = (BuTo)*
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which proves the theorem. Equality holds only if no branching occurs and if

h(i} — h(i—1) is a constant, i.e. A; = K.
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