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Abstract

A simple lemma bounds s.d.(T )/ET for hitting times T in Markov
chains with a certain strong monotonicity property. We show how this
lemma may be applied to several increasing set-valued processes. Our
main result concerns a model of first passage percolation on a finite
graph, where the traversal times of edges are independent Exponentials
with arbitrary rates. Consider the percolation time X between two
arbitrary vertices. We prove that s.d.(X)/ES is small if and only if
Ξ/EX is small, where Ξ is the maximal edge-traversal time in the
percolation path attaining X.

MSC 2010 subject classifications: 60J27, 60K35, 05C82.

1 Introduction

For random variables T arising (loosely speaking) as optimal costs in some
“random environment” model, one might not be able to estimate ET explic-
itly, for one of two reasons: it may involve a difficult optimization problem
(exemplified by the Euclidean TSP over random points [16]), or the model
may involve many parameters (the case more relevant to this paper). In such
cases the well-known method of bounded differences [14] often enables us to
bound T −ET explicitly, and this general topic of concentration inequalities
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has been developed in many directions over the last generation. What we
will call (recalling the weak law of large numbers) a weak concentration in-
equality is just a result showing s.d.(T )/ET is small. The starting point for
this paper is a simple technique (section 1.1) for proving weak concentra-
tion for hitting times T in Markov chains with a certain strong monotonicity
property. At first sight one might doubt that this technique could be more
than very narrowly applicable, but its quick use in three diverse contexts
(sections 1.2 - 1.4) should partly dispel such doubts. Our main result con-
cerns a more sophisticated analysis of a model of first passage percolation on
a finite graph, where the traversal times of edges are independent Exponen-
tials with arbitrary rates. We will describe that result and its background
in section 2, and prove it in the subsequent sections.

.

1.1 A monotonicity condition

The setting is a continuous-time Markov chain (Zt) on a finite state space
Σ, where we study the hitting time

T := inf{t : Zt ∈ Σ0} (1)

for a fixed subset Σ0 ⊂ Σ. Assume

h(S) := EST <∞ for each S ∈ Σ (2)

which holds under the natural “reachability” condition. Assume also a
rather strong “monotonicity” condition:

h(S′) ≤ h(S) whenever S → S′ is a possible transition. (3)

In a typical example, the state space Σ will be the space of all subsets S of a
given finite set V, and possible transitions will be of the form S → S ∪ {v}.
A special case of our simple lemma, which suffices for the quick applications
in sections 1.2 - 1.4, is

Lemma 1 Under condition (3), for any initial state,

var T

ET
≤ max{h(S)− h(S′) : S → S′ a possible transition}.

For a more general case we want to allow the possibility of occasional tran-
sitions for which h(S)− h(S′) is not so small.
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Lemma 2 In the setting of Lemma 1, for arbitrary δ, ε > 0,

var T

(ET )2
≤ δ + ε+

E
∫ T

0 11{qδ(Zu)≥ε}du

ET
.

where qδ(S) is defined at (9) below.

The proofs below involve only very standard martingale analysis. We are
not claiming any conceptual novelty in these results, but instead emphasize
their applications later.

Proof of Lemma 1. Expectation is relative to some fixed initial state
S0. Note that T = inf{t : h(Zt) = 0}, that t→ h(Zt) is decreasing and so for
any reachable state S we have h(S) ≤ h(S0) = ET , facts we use frequently
without comment. Consider the martingale

Mt := E(T |Zt) = h(Zt∧T ) + t ∧ T . (4)

The Doob-Meyer decomposition of M2
t into a martingale Qt and a pre-

dictable process is clearly

M2
t −M2

0 = Qt +

∫ t

0
a(Zu) du

where
a(S) :=

∑
S′

q(S, S′) (h(S)− h(S′))2 (5)

where q(S, S′) are the transition rates. Taking expectation at t =∞ gives

var T = E
∫ T

0
a(Zu) du. (6)

On the other hand the martingale property (4) for E(T |Zt) corresponds to
the identity

b(S) :=
∑
S′

q(S, S′)(h(S)− h(S′)) = 1 while S ∩ Σ0 = ∅ (7)

and therefore

ET = E
∫ T

0
b(Zu) du. (8)

Setting

κ = max{h(S)− h(S′) : S → S′ a possible transition}
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we clearly have a(S) ≤ κb(S); note this is where we use the monotonicity
hypothesis (3). The result now follows from (6,8).

Proof of Lemma 2. We continue with the notation above. Fix δ > 0
and write, for a possible transition S → S′,

h(S)− h(S′) ≤ δ ET + 11{h(S)−h(S′)>δET} ET.

Using this to bound one term of the product (h(S)−h(S′)2 in the definition
(5) of a(S), and comparing with the definition (7) of b(S), we obtain

a(S) ≤ b(S) · δET
+

∑
S′: h(S)−h(S′)>δET

q(S, S′)(h(S)− h(S′)) · ET

While S ∩ Σ0 = ∅ we have b(S) = 1 and so

a(S)

ET
≤ δ + qδ(S)

where
qδ(S) :=

∑
S′: h(S)−h(S′)>δET

q(S, S′)(h(S)− h(S′)). (9)

Using (6)
var T

ET
≤ δET + E

∫ T

0
qδ(Zu)du.

Because qδ(S) ≤ b(S) ≡ 1 we can fix ε > 0 and write qδ(Zu) ≤ ε+11{qδ(Zu)≥ε},
and the result follows.

Discrete-time chains. Given a discrete-time Markov chain with transi-
tion probabilities p(S, S′) there is a corresponding continuous-time Markov
chain with transition rates q(S, S′) = p(S, S′). The relation between the
hitting times Tdisc and Tcont for these two chains is (using Wald’s identity)

ETcont = ETdisc; var Tcont = var Tdisc + ETdisc. (10)

Via this continuization device our results may be applied to discrete-time
chains.
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1.2 A general Markovian growth process

For a first “obvious” use of Lemma 1, we consider a general growth process
(Zt) on the lattice Z2. The states are finite vertex-sets S, the possible
transitions are S → S∪{v} where v is a vertex adjacent to S. For each such
transition, we assume the transition rates are bounded above and below:

0 < c∗ ≤ q(S, S ∪ {v}) ≤ c∗ <∞. (11)

Initially Z0 = {0}, where 0 denotes the origin. The “monotonicity” condi-
tion we impose is that these rates are increasing in S:

if v, v′ are adjacent to S then q(S, S ∪ {v}) ≤ q(S ∪ {v′}, S ∪ {v, v′}) .
(12)

Note that we do not assume any kind of spatial homogeneity.

Proposition 3 Let A be an arbitrary subset of vertices Z2 \ {0}, and con-
sider T := inf{t : Zt ∩A is non-empty.}. Under assumptions (11, 12),

var T ≤ ET/c∗.

Proof. Condition (12) allows us to couple versions (Z ′t, Z
′′
t ) of the process

starting from states S′ ⊂ S′′, such that in the coupled process we have
Z ′t ⊆ Z ′′t for all t ≥ 0. In particular, h(S) := EST satisfies condition (3).
To deduce the result from Lemma 1 we need to show that, for any given
possible transition S0 → S0 ∪ {v0}, we have

h(S0) ≤ h(S0 ∪ {v0}) + 1/c∗. (13)

Now by running the process started at S0 until the first time T ∗ this process
contain v0, and then coupling the future of that process to the process started
at S0 ∪ {v0}, we have h(S0) ≤ ES0T

∗ + h(S0 ∪ {v0}). And ES0T
∗ ≤ 1/c∗ by

(11), establishing (13).

1.3 A multigraph process

Here is an example which we find more striking. Motivation for this kind of
model will be described elsewhere.

Take a finite connected graph (V,E) with edge-weights w = (we), where
we > 0 ∀e ∈ E. Define a multigraph-valued process as follows. Initially we
have the vertex-set V and no edges. For each vertex-pair e = (vy) ∈ E,
edges vy appear at the times of a Poisson (rate we) process, independent
over e ∈ E. So at time t the state of the process, Zt say, is a multigraph
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with Ne(t) ≥ 0 copies of edge e, where (Ne(t), e ∈ E) are independent
Poisson(twe) random variables.

We study how long until Zt has various connectivity properties. Specif-
ically, consider

• T ′k = inf{t : Zt is k-edge-connected}

• Tk = inf{t : Zt contains k edge-disjoint spanning trees.}

Here we regard the Ne(t) copies of e as disjoint edges. Remarkably, Lemma
1 enables us to give a simple proof of a “weak concentration” bound which
does not depend on the underlying weighted graph.

Proposition 4
s.d.(Tk)

ETk
≤ 1√

k
, k ≥ 1.

Using the continuization device at (10), the same bound holds in the discrete-
time model where edges e arrive IID with probabilities proportional to we

We conjecture that some similar result holds for T ′k. But proving this by
our methods would require some structure theory (beyond Menger’s theo-
rem) for k-edge-connected graphs, and it is not clear whether relevant theory
is known.

Proof of Proposition 4. We will apply Lemma 1. Here the states S
are multigraphs over V, and h(S) is the expectation, starting at S, of the
time until the process contains k edge-disjoint spanning trees. What are the
possible values of h(S) − h(S ∪ {e}), where S ∪ {e} denotes the result of
adding an extra copy of e to the multigraph S?

Consider the “min-cut” over proper subsets S ⊂ V

γ := min
S
w(S, Sc)

where w(S, Sc) =
∑

v∈S,y∈Sc wvy. Because a spanning tree must have at
least one edge across the min-cut,

ETk ≥ k/γ. (14)

On the other hand we claim

h(S)− h(S ∪ {e}) ≤ 1/γ. (15)

To prove this, take the natural coupling (Zt, Z
+
t ) of the processes started

from S and from S ∪ {e}, and run the coupled process until Z+
t contains k
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edge-disjoint spanning trees. At this time, the process Zt either contains k
edge-disjoint spanning trees, or else contains k − 1 spanning trees plus two
trees (regard as edge-sets t1 and t2) such that t1 ∪ t2 ∪ {e} is a spanning
tree. So the extra time we need to run (Zt) is at most the time until some
arriving edge links t1 and t2, which has mean at most 1/γ. This establishes
(15), and then Lemma 1 establishes the proposition.

1.4 Coverage processes

The topic of coverage processes is centered upon spatial or combinatorial
variants of the coupon collector’s problem; see the monograph [10] and scat-
tered examples in [1]. Classical theory concerns low-parameter models for
which the cover time Tn of a “size n” model can be shown to have a limit
distribution after scaling: (Tn − an)/bn →d ξ for explicit an, bn. In many
settings, Lemma 1 can be used to give a weak concentration result for mod-
els with much less regular structure. Here is a very simple example, whose
one-line proof is left to the reader.

Proposition 5 Let G be an arbitrary n-vertex graph, and let (Vi, i ≥ 1) be
IID uniform random vertices. Let T be the smallest t such that every vertex
is contained in, or adjacent to, the set {Vi, 1 ≤ i ≤ t}. Then var T ≤ n ET .

For a sequence (Gn) of sparse graphs, ETn will be of order n log n, so the
bound says that s.d.(Tn)/ET = O(1/

√
log n).

2 The FPP model

As in section 1.3 we start with a finite connected graph (V,E) with edge-
weights w = (we), where we > 0 ∀e ∈ E, but the model here is different. To
the edges e ∈ E attach independent Exponential(rate we) random variables
ξe. For each pair of vertices (v′, v′′) there is a random variable X(v′, v′′)
which can be viewed in two equivalent ways:

viewing ξe as the length of edge e, then X(v′, v′′) is the length of the
shortest route from v to v′;

viewing ξe as the time to traverse edge e, then X(v′, v′′) is the “first
passage percolation” time from v to v′.

Taking the latter view, we call this the FPP model, and call X(v′, v′′) the
FPP time and ξe the traversal time. This type of model and many general-
izations have been studied extensively in several settings, in particular

• FPP with general IID weights on Zd [12]
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• FPP on classical random graph (Erdős-Rényi or configuration) models
[5, 6]

• and a much broader “epidemics and rumors on complex networks”
literature [9].

However, this literature invariably starts by assuming some specific graph
model; we do not know any “general results” which relate properties of the
FPP model to properties of a general underlying graph. As an analogy,
another structure that can be associated with a weighted finite graph is a
finite reversible Markov chain; the established theory surrounding mixing
times of Markov chains [3, 13, 15] does contain “general results” relating
properties of the chain to properties of the underlying graph.

This article makes a modest start by studying the “weak concentration”
property: when it is true that X(v′, v′′) is close to its expectation? We can
reformulate the FPP model as a set-valued process (see section 2.1(a) for
details) and then Lemma 1 immediately implies the following result.

Proposition 6 var X(v′, v′′) ≤ EX(v′, v′′)/w∗ for w∗ := min{we : e ∈ E}.

Bounds of this type are classical on Zd [11],
Proposition 6 implies that on any unweighted graph (we = 1 for all edges

e), the spread of X = X(v′, v′′) is at most order
√
EX. For many specific

graphs, stronger concentration results are known. For Z2 there is extensive
literature (see [8] for a recent overview) on the longstanding conjecture that
the spread is order (EX)1/3. For the complete graph (e.g. [2] sec. 7.3) and
for sparse random graphs on n vertices [5] the spread of X/EX is typically
of order 1/ log n.

In contrast, in this paper we study the completely general case where
the edge-weights we may vary widely over the different edges e ∈ E. Here
is our main result (conjectured in [2] sec. 7.4). Given a pair (v′, v′′), there
is a random path π(v′, v′′) that attains the FPP time X(v′, v′′). Define
Ξ(v′, v′′) := max{ξe : e ∈ π(v′, v′′)} as the maximum edge-traversal time in
this minimal path. Recall the “L0 norm”

||V ||0 := inf{δ : P(|V | > δ) ≤ δ}.

Theorem 7 There exist functions ψ+ and ψ− : (0, 1] → (0,∞) such that
ψ+(δ) ↓ 0 as δ ↓ 0, and ψ−(δ) > 0 for all δ > 0, and such that, for all finite
connected edge-weighted graphs and all vertex pairs (v′, v′′),

ψ−

(∣∣∣∣∣∣∣∣ Ξ(v′, v′′)

EX(v′, v′′)

∣∣∣∣∣∣∣∣
0

)
≤ s.d.(X(v′, v′′))

EX(v′, v′′)
≤ ψ+

(∣∣∣∣∣∣∣∣ Ξ(v′, v′′)

EX(v′, v′′)

∣∣∣∣∣∣∣∣
0

)
.
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In words, X/EX has small spread if and only if Ξ/EX is small. Intuition
for this result comes from the “almost disconnected” case where the path
π(v′, v′′) must contain a specific “bridge” edge e with small we; if 1/we is
not o(EX) then the contribution to X from the traversal time ξe is enough
to show that X cannot have weakly concentrated distribution.

The proof of the upper bound starts from our “more general” inequality,
Lemma 2. See section 3 for an outline.

Theorem 7 is unsatisfactory in that the conditions are not directly on
the edge-weights w = (we). By analogy with the bounds ([15] sec. 3.2) for
Markov chain mixing times in terms of the spectral profile, it seems likely
that Proposition 6 can be extended to give more widely applicable upper
bounds on spread in terms of extremal flow rates w(S, Sc) =

∑
v∈S,y∈Sc wvy.

However we do not have any conjecture for two-sided bounds analogous to
Theorem 7.

A particular case of FPP in our setting – edge-weights we varying widely
over the different edges – is studied in detail in recent work of Chatterjee-
Dey [7]. In their model V = Zd with wxy = ||y − x||−α+(1). Results and
conjectures from that paper are consistent with our Theorem 7, which says
that properties X(0, nz)/EX(0, nz) →p 1 and Ξ(0, nz)/EX(0, nz) →p 1
must either both hold or both fail. They identify several qualitatively
different regimes. In their linear growth regime (α > 2d + 1) they show
EX(0, nz)/n converges to a nonzero constant and show that both proper-
ties hold. In their super-linear growth regime (α ∈ (2d, 2d + 1)) they show
X(0, nz) = nα−2d+o(1); here their analysis suggests both properties fail. For
α ∈ (d, 2d) they show X(0, nz) grows as a power of log n, and their ar-
guments suggest both properties hold. The qualitative behavior and proof
techniques in [7] are different in these different regimes, whereas our Theo-
rem 7 is a single result covering all regimes, albeit a less explicit result.

2.1 Some preliminaries

(a) We will view the FPP process started at v′ as a process (Zt) taking
values in the (finite) space of subsets S ⊆ V of vertices, that is as

Zt := {v : X(v′, v) ≤ t}. (16)

The assumption of Exponential distributions implies that (Zt) is the continuous-
time Markov chain with Z0 = {v′} and transition rates

S → S ∪ {y} : rate w(S, y) :=
∑
s∈S

wsy (y 6∈ S).
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So we are in the setting of Lemmas 1 and 2. Given a target vertex v′′ the
FPP time X(v′, v′′) is a stopping time T of the form (1), and the function
h(S) at (2) is just the function

h(S) := Emin
v∈S

X(v, v′′).

For a possible transition S → S ∪ {y}, by considering the first time y is
reached in the process started from S we have h(S) ≤ 1

w(S,y) + h(S ∪ {y})
and so

h(S)− h(S ∪ {y}) ≤ 1
w(S,y) ≤

1
w∗

for w∗ := min{we : e ∈ E}. Now Lemma 1 does indeed imply Proposition
6, as stated earlier.

Presumably some analog of Theorem 7 remains true when the Expo-
nential assumption is relaxed to some much weaker “shape of distribution”
assumption, but we have not investigated that setting.

(b) FPP times such as X(v′, v′′) are examples of distributions Y > 0 with
the submultiplicative property

P(Y > y1 + y2) ≤ P(Y > y1) P(Y > y2); y1, y2 > 0.

We will need the general bound provided by the following straightforward
lemma.

Lemma 8 There exists a function γ(u) > 0 with γ(u) ↓ 0 as u ↓ 0 such
that, for every submultiplicative Y and every event A,

EY 11A
EY

≤ γ(P(A)).

Note it follows that

P (Y ≥ y) ≥ γ−1
(
EY 11{Y≥y}

EY

)
(17)

for the inverse function γ−1(u) ↓ 0 as u ↓ 0.

(c) We will need an elementary stochastic calculus lemma.

Lemma 9 Let T1 be a stopping time with (random) intensity ηt – that is,
P(t < T1 < t + dt|F t) = ηt dt on {T1 > t}. Let ζ be another stopping time
such that ηt ≥ c on {ζ > t}, for constant c > 0. Then

P(T1 ≤ ζ ∧ t0) ≥ (1− e−ct0)P(ζ > t0).
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Proof. Applying the optional sampling theorem to the martingale exp(
∫ t

0 ηs ds) ·
11{T>t} and the stopping time ζ ∧ t0 shows

E[exp(
∫ ζ∧t0

0 ηs ds) · 11{T>ζ∧t0}] = 1.

Now

exp(
∫ ζ∧t0

0 ηs ds) ≥ exp(c (ζ ∧ t0)) ≥ 1 + (ect0 − 1)11{ζ>t0}

and so
P(T1 > ζ ∧ t0) + (ect0 − 1)P(T1 > ζ ∧ t0, ζ > t0) ≤ 1.

That is,

P(T1 ≤ ζ ∧ t0) ≥ (ect0 − 1)P(T1 > ζ ∧ t0, ζ > t0)

≥ (ect0 − 1)(P(ζ > t0)− P(T1 ≤ ζ ∧ t0))

which rearranges to the stated inequality.

3 Proof of upper bound in Theorem 7

Fix v′ and as above view the FPP process started at v′ as the continuous-
time Markov chain (Zt) at (16) on the space of subsets of V. Fix a target
v′′ 6= v′ and in the following write S for an arbitrary subset of vertices
containing v′. Write

h(S) := Emin
v∈S

X(v, v′′)

for the mean percolation time from S to v′′, so h(S) = 0 iff v′′ ∈ S. So

T := X(v′, v′′) = inf{t : h(Zt) = 0}

is a stopping time for (Zt). Note that t → h(Zt) is decreasing and h(S) ≤
ET .

Outline of proof. Step 1 is to translate Lemma 2 into our FPP setting;
this shows it is enough to prove that in all transitions S → S ∪ {y} the
decrements h(S) − h(S ∪ {y}) are o(ET ); so suppose not, that is suppose
some are Ω(ET ). Step 2 shows that in some such transitions, the used
edge vy will (with non-vanishing probability) have traversal time ξvy also of
order Ω(ET ). Step 3 shows that some such edges will (with non-vanishing
probability) be in the minimal path.
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Details of proof. Step 1. Substituting 2δ for δ, Lemma 2 says that for
arbitrary δ, ε > 0

var T

(ET )2
≤ 2δ + ε+

E
∫ T

0 11{qδ(Zu)≥ε}du

ET
. (18)

where

qδ(S) :=
∑

y: h(S)−h(S∪{y})>2δET

w(S, y)(h(S)− h(S ∪ {y})).

Informally, as stated in the outline of proof, this shows it will suffice to
prove that in transitions S → S ∪{y} the decrements h(S)− h(S ∪{y}) are
o(ET ).

Step 2. Now fix 0 < u1 < u2.

Lemma 10 Condition on Zt0 = S0. The event

during [t0, t0 + u2] the process (Zt0+u) makes a transition S →
S ∪ {y} such that h(S) − h(S ∪ {y}) > δET and using an edge
vy for which ξvy > u1

has probability at least (1− u2
δET )+

(
1− exp(−(u2−u1)q(S0)

2ET )
)

.

Proof. Define

ζ = inf{t > t0 : h(Zt) ≤ h(S0)− δET}

so that, because t→ h(Zt) is decreasing,

h(S0)− h(Zt0+u) ≤ δET on {ζ > t0 + u}. (19)

Define

q∗(S) :=
∑

y: h(S)−h(S∪{y})>δET

w(S0, y)(h(S)− h(S ∪ {y})).

Note this is the definition of qδ(S) modified by changing the constraint
“> 2δET” to “> δET” and changing w(S, y) to w(S0, y). Observe the
relation, for Zt0+u ⊇ S0,

h(Zt0+u)− h(Zt0+u ∪ {y}) ≥ h(Zt0+u)− h(S0 ∪ {y})
= [h(S0)− h(S0 ∪ {y})]−[h(S0)− h(Zt0+u)]. (20)
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For y satisfying the constraint

h(S0)− h(S0 ∪ {y}) > 2δET

in the definition of q(S0), and on the event {ζ > t0 +u}, inequalities (19,20)
show that y satisfies the constraint in the definition of q∗(Zt0+u), and also
show that

h(Zt0+u)− h(Zt0+u ∪ {y}) ≥ 1
2 [h(S0)− h(S0 ∪ {y})],

implying that
q∗(Zt0+u) ≥ 1

2q(S0) on {ζ > t0 + u}. (21)

For S ⊇ S0 we have, from the definition of q∗(S), a crude bound

q∗(S) ≤ (ET )
∑

y: h(S)−h(S∪{y})>δET

w(S0, y)

and applying this to the left side of (21) gives∑
y: h(Zt0+u)−h(Zt0+u∪{y})>δET

w(S0, y) ≥ q(S0)

2ET
on {ζ > t0 + u}.

Over the time interval [t0 + u1, t0 + u2] the left side is the intensity of an
event which implies the event (D, say) in Lemma 10 (in particular, an edge
vy is used with v ∈ S0 = Z(t0), and so its “age” ξvy must be at least u1).
We are now in the setting of Lemma 9, which shows that

P(D) ≥ P(ζ > t0 + u)
(

1− exp(−(u2−u1)q(S0)
2ET )

)
.

By the martingale property (4) of h(Zt) + t and Markov’s inequality

P(ζ ≤ t0 + u) = P(h(Zt0+u2) ≤ h(S0)− δET ) ≤ u2
δET (22)

establishing the bound stated in Lemma 10.

Step 3.

Lemma 11 Conditional on the process (Zu) making at time t0 a transition
S → S∪{y} using an edge vy, the probability that edge vy is in the minimal

path π(v′, v′′) is at least γ−1(h(S)−h(S∪{y})
ET ), for the inverse function γ−1(·) >

0 at (17).
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Proof. Condition as stated. So after the transition we have

T − t0 = min(A,B)

where B = X(y, v′′) and A = minv∈S X
∗(v, v′′) where X∗ denotes the mini-

mum over paths not using y. The probability in question equals P(B < A);
note that A and B are typically dependent.

It is easy to check that the solution to the problem

given the distribution of A > 0, construct a r.v. B′ > 0 to mini-
mize P(B′ < A) subject to the constraint that EA−Emin(A,B′)
takes a given value

is to take B′ = A11{A≤a0} for a0 chosen to satisfy the constraint. So in our
setting,

P(B < A) ≥ P(A > a0)

for a0 chosen to satisfy

EA11{A>a0} = EA− Emin(A,B) = h(S)− h(S ∪ {y}).

Because A has the submultiplicative property, Lemma 8 shows that

P(A > a0) ≥ γ−1
(
h(S)−h(S∪{y})

EA

)
.

Because γ−1(·) is decreasing and EA ≤ ET , we have established the lemma.

Step 4. We now combine the ingredients above. Define U1 = inf{t ≥ 0 :
q(Zt) ≥ ε} and inductively

Uj+1 = inf{t ≥ Uj + u2 : q(Zt) ≥ ε}.

Note that the condition

ju2 ≤
∫ T

0
11{q(Zu)≥ε}du (23)

is sufficient to ensure Uj < ∞. Condition on Uj = t0, ZUj = S0 and apply
Lemmas 10 and 11. We deduce that, with probability at least

(1− u2
δET )

(
1− exp(−(u2−u1)ε

2ET )
)
γ−1(δ)

the minimal path π(v′, v′′) contains an edge vy with ξvy ≥ u1 and such
that y is first reached during (Uj , Uj+1]. The latter property ensures these
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edges are distinct as j varies (but note the corresponding ξvy are dependent).
Summing over j, applying (23) and taking expectation, we find that

N(u1) := |{e ∈ π(v′, v′′) : ξe ≥ u1}|

satisfies

EN(u1) ≥ (1− u2
δET )+

(
1− exp(−(u2−u1)ε

2ET )
)
γ−1(δ) 1

u2
E
∫ T

0
11{q(Zu)≥ε}du.

(24)
Writing Ξ = Ξ(v′, v′′), the event {N(u1) ≥ 1} is the event {Ξ ≥ u1}. Also
u1N(u1) ≤ T , so we can write N(u1) ≤ T

u1
11{Ξ≥u1} and then

EN(u1) ≤ ET
u1

ET11{Ξ≥u1}
ET ≤ ET

u1
γ(P(Ξ > u1)),

the final inequality by Lemma 8. Combining with (24) and rearranging gives
a bound for the final term of (18):

E
∫ T

0 11{q(Zu)≥ε}du

ET
≤ u2 γ(P(Ξ > u1))

u1(1− u2
δET )+

(
1− exp(−(u2−u1)ε

2ET )
)
γ−1(δ)

.

This becomes a little easier to understand when we set u1 = vET and
u2 = 2u1; then (18) becomes

var T

(ET )2
≤ 2δ + ε+

2 γ(P( Ξ
ET > v))

(1− v
δ )+

(
1− exp(−vε2 )

)
γ−1(δ)

. (25)

We could manipulate this into a complicated expression for an upper bound
function ψ+(·) in Theorem 7. But it is simpler to observe that existence of
some upper bound function is equivalent to the following limit assertion: for
weighted graphs w(n) and FPP times T (n) = X(n)(v(n)′, v(n)′′)

if
Ξ(n)(v(n)′, v(n)′′)

ET (n)
→p 0 then

var T (n)

(ET (n))2
→ 0.

And this is immediate from (25).

4 Proof of lower bound in Theorem 7

We described this lower bound assertion in [2] sec. 7.4 as “intuitively clear
(and not hard to prove)”. The intuition is that, given a typical realization
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of the process where X = X(v′, v′′) has some value X0, and some value Ξ0

attained by some ξe, there are other realizations for which this ξe ranges
over the interval [0,Ξ0], for which therefore the value of X ranges over
[X0 − Ξ0, X0], so the order of s.d.(X) should be at least the order of Ξ.
Formalizing this intuition is not quite trivial. The proof below is rather
crude – likely there is a more elegant argument giving a better bound.

Proof. Fix a pair (v′, v′′) and write X = X(v′, v′′) and Ξ = Ξ(v′, v′′). So X
is a function of the traversal times (ξe). If we couple (ξe) with a copy (ξ′e)
of (ξe), then by an elementary inequality

var X ≥ 1
4E(X ′ −X)2. (26)

We will use the following coupling. Fix 0 < a < b and write E(λ; a, b) for
the distribution of an Exponential(λ) random variable conditioned to lie in
[a, b]. Define (ξ′e, ξe) to be independent as e varies, with

if ξe /∈ [a, b] then ξ′e = ξe
if ξe ∈ [a, b] then ξ′e is conditionally independent of ξe with conditional

distribution E(we; a, b).
Consider the set Dab of edges e in the minimal path π = π(v′, v′′) for which
ξe ∈ [a, b]. By considering the same path in the coupled copy,

X ′ −X ≤
∑
e∈π

(ξ′e − ξe) =
∑
e∈Dab

(ξ′e − ξe). (27)

To analyze this expression we will use the following lemma. For k ≥ 1 and
s > 0 define

Fk(s) := E

(
max(0, s−

k∑
i=1

Ui)

)2

(28)

where the Ui are independent Uniform(0, 1).

Lemma 12 Let (Vi, 1 ≤ i ≤ k) be independent E(λi; a, b), for arbitrary (λi).
Then for arbitrary vi ∈ [a, b],

E

(
max

(
0,

k∑
i=1

vi −
k∑
i=1

Vi

) )2

≥ (b− a)2Fk

(
k∑
i=1

vi−a
b−a

)
. (29)

Proof. The distributions E(λi; a, b) are stochastically increasing with λ,
so the left side is minimized in the λi → ∞ limit, which is the uniform
distribution on [a, b]; the limit value is obtained from (28) by scaling.
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We can now combine inequalities (27) and (29) to deduce that, on the event
{|Dab| = k} for k ≥ 1,

E((X −X ′)2|ξe, e ∈ E) ≥ (b− a)2Fk

 ∑
e∈Dab

ξe−a
b−a

 .

So

E(X −X ′)2 ≥ (b− a)2
∑
k≥1

E

11{|Dab|=k} Fk

 ∑
e∈Dab

ξe−a
b−a

  . (30)

We need to lower bound the right side. The issue is that, if we is large then
ξe−a may be small. We handle this issue by considering two different values
of a. Note that the functions Fk(s) are decreasing in k and increasing in s.
Fix a1 < a2 < b, so that for 1 ≤ k ≤ K

Fk

 ∑
e∈Da1b

ξe−a1

b−a1

 ≥ FK

 ∑
e∈Da1b

ξe−a1

b−a1

 (decreasing in k)

≥ FK

 ∑
e∈Da2b

ξe−a1

b−a1

 (Da2b ⊆ Da1b)

≥ FK

(
|Da2b| a2−a1

b−a1

)
(increasing in s)

≥ FK

(
a2−a1
b−a1

)
11{|Da2b

|≥1} (increasing in s).

Applying (30) with a = a1 and restricting the sum to 1 ≤ k ≤ K,

E(X −X ′)2 ≥ (b− a1)2 FK

(
a2−a1
b−a1

)
P(|Da1b| ≤ K, |Da2b| ≥ 1). (31)

Because a1|Da1b| ≤ X, Markov’s inequality tells us P(|Da1b| ≥ K) ≤ 1
a1K

EX.
Also the event {|Da2b| ≥ 1} contains the event {a1 ≤ Ξ ≤ b}, so

P(|Da1b| ≤ K, |Da2b| ≥ 1) ≥ P(Ξ ≥ a1)− P(Ξ ≥ b)− 1
a1K

EX.

Because Ξ ≤ X we have P(Ξ ≥ b) ≤ EX/b, and combining with (31) and
(26) we conclude

var X ≥ 1
4(b− a1)2 FK

(
a2−a1
b−a1

) (
P(Ξ ≥ a1)− (1

b + 1
a1K

)EX
)+

.
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This holds for arbitrary 0 < a1 < a2 < b and K ≥ 1. We now take 1 > δ > 0
and choose

a1 = δEX; a2 = 2a1; b = 3EX/δ

and find

var X

(EX)2
≥ 1

4(3
δ − δ)

2 FK

(
δ2

3−δ2

) (
P( Ξ

EX ≥ δ)− ( δ3 + 1
δK )
)+
.

So finally choosing K = K(δ) ≥ 3δ−2, we see that the lower bound in
Theorem 7 holds for

ψ−(δ) :=
√

1
4(3
δ − δ)2 FK( δ2

3−δ2 ) δ
3 .

5 Final remarks

(a). The key point of results such as Proposition 4 and Theorem 7 is that
the bounds do not depend on the the size n of the graph – any simple use of
the method of bounded differences in these models would give bounds that
did depend on n.

(b). A somewhat different general approach to proving weak concentration
for general coverage processes, assuming IID random subsets, was given in
[4], and used to prove weak concentration for Markov chain cover times. The
latter result does not seem to follow easily from the methods in this paper.

(c). Theorem 7 went beyond Proposition 6 by using Lemma 2 instead of
the simpler Lemma 1, and so one can imagine analogous improvements of
the kind of results in sections 1.2 - 1.4.
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