
The SI and SIR epidemics on General Networks

David J. Aldous ∗

July 14, 2016

Abstract

Intuitively one expects that for any plausible parametric epidemic model,
there will be some region in parameter-space where the epidemic affects
(with high probability) only a small proportion of a large population, an-
other region where it affects (with high probability) a non-negligible pro-
portion, with a lower-dimensional “critical” interface. This dichotomy is
certainly true in well-studied specific models, but we know of no very gen-
eral results. A recent result stated for a bond percolation model can be
restated as giving weak conditions under which the dichotomy holds for an
SI epidemic model on arbitrary finite networks. This result suggests a con-
jecture for more complex and more realistic SIR epidemic models, and the
purpose of this article1 is to record the conjecture.

1 A bond percolation result

We start by repeating almost verbatim the statement of the main result of [1].
Take a finite connected graph (V,E) with edge-weights w = (we), where we >
0 ∀e ∈ E. To the edges e ∈ E attach independent Exponential(rate we) random
variables ξe. In the language of percolation theory, say that edge e becomes open
at time ξe. The set of open edges at time t constitutes a random graph G(t) and
in particular determines a random partition of V into connected components;
write C(t) for the largest number of vertices in any such connected component.
Now consider a sequence (Vn,En) of such weighted graphs, where both the graph
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topologies and the edge-weights are arbitrary subject only to the conditions that
|Vn| → ∞ and that for some 0 < t1 < t2 <∞

lim
n

ECn(t1)/|Vn| = 0; lim inf
n

ECn(t2)/|Vn| > 0. (1)

In the language of random graph theory, this condition says that a giant com-
ponent emerges (with non-vanishing probability) sometime between t1 and t2.
Proposition 1 asserts, informally, that the “incipient” time at which the giant
component starts to emerge is deterministic to first order.

Proposition 1 ([1]) Given a sequence of graphs satisfying (1), there exists a
deterministic sequence τn ∈ [t1, t2] such that, for every sequence εn ↓ 0 sufficiently
slowly, the random times

Tn := inf{t : Cn(t) ≥ εn|Vn|}

satisfy
Tn − τn →p 0.

2 Reformulation as an SI epidemic model

Mathematical modeling of epidemics has a long history and a large literature,
and relevant issues will be briefly indicated in section 3. An SI model refers to
a model in which individuals are either infected or susceptible. In our context,
individuals are represented as vertices of an edge-weighted graph, and the model
is

for each edge (vy), if at some time one individual (v or y) becomes
infected while the other is susceptible, then the other will become
infected with some transmission probability pvy.

These transmission events are independent over edges. Regardless of details of the
time for such transmissions to occur, it is clear that this model is closely related
to the random graph model in which edges e = (vy) are present independently
with probabilities pe = pvy, as follows.

(*) The set of ultimately infected individuals in the SI model is, in the
random graph model, the union of the connected components which
contain initially infected individuals.
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In modeling an epidemic on a population with a given graph structure, we re-
gard edge-weights we = wvy as indicating relative frequency of contact. Introduce
a virulence parameter θ, and define transmission probabilities

pe = 1− exp(−weθ). (2)

Note this allows completely arbitrary values of (pe), by appropriate choice of
(we). Now the point of the parametrization (2) is that the random graph in (*)
above is exactly the same as the random graph G(θ) in section 1. So we can study
how to translate Proposition 1 into a statement about the SI epidemic model.
It is important to note a conceptual shift in this translation. Proposition 1 is
most naturally interpreted as a result about a random graph process evolving
with time t, and the proof in [1] relies on this being a Markov process on graph-
space. However in the SI model we retain no notion of “time”; we use (2) as a
device to define a one-parameter family (with parameter θ) of edge-transmission
probabilities which passes through an arbitrary given set (pe), and our results
concern how the size of the epidemic varies with θ.

The translation rests upon a simple observation leading to (3) below. For a
graph with vertex-set V and transmission probabilities (pe), write C for the size
of the largest connected component in the random graph model, and write C ′k for
the number of ultimately infected individuals in the SI epidemic model started
with k uniformly random infected individuals. From relation (*) we clearly have
C ′k ≤ kC and

P(C ′k ≥ C | C) ≥ 1− (1− C/|V|)k.

These inequalities imply

P(C ′k ≥ ε|V|) ≤ P(C ≥ k−1ε|V|)
P(C ′k ≥ ε|V|) ≥ (1− (1− ε)k) P(C ≥ ε|V|).

Considering edge-weighted graphs Vn and transmission probabilities of form (2),
this relation between largest component size Cn(θ) and number of ultimately
infected individuals C ′n,k(θ) is

(1− (1− ε)k) P(Cn(θ) ≥ ε|Vn|) ≤ P(C ′n,k(θ) ≥ ε|Vn|) ≤ P(Cn(θ) ≥ k−1ε|Vn|).
(3)

But we can apply Proposition 1 to the (Cn(θ)), under condition (1), and write
its conclusion as: there exist deterministic τn such that, for every sequence εn ↓ 0
sufficiently slowly, for each fixed δ > 0

P(Cn(τn − δ) ≥ εn|Vn|)→ 0, P(Cn(τn + δ) ≥ εn|Vn|)→ 1.
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It is now straightforward to use (3) to translate this into a result for the SI
epidemic, which we state carefully as follows. Say a sequence of non-negative
random variables (Yn) is bounded away from 0 in probability if

lim
δ↓0

lim sup
n

P(Yn ≤ δ) = 0

and write this as Yn �p 0.

Proposition 2 Take edge-weighted graphs with |Vn| → ∞, consider the SI epi-
demics with transmission probabilities of form (2), and write C ′n,k(θ) for the
number of ultimately infected individuals in the epidemic started with k uniformly
random infected individuals. Suppose there exist some 0 < θ1 < θ2 < ∞ such
that, for all kn →∞ sufficiently slowly,

lim
n

EC ′n,kn(θ1)/|Vn| = 0; lim inf
n

EC ′n,kn(θ2)/|Vn| > 0. (4)

Then there exist deterministic τn ∈ [θ1, θ2] such that, for all kn →∞ sufficiently
slowly,

C ′n,kn(τn − δ)/|Vn| →p 0, C ′n,kn(τn + δ)/|Vn| �p 0

fior all fixed δ > 0.

Proposition 2 provides a subcritical/supercritical dichotomy for the SI epidemics
under consideration. The conceptual point is that, for virulence parameter θ not
close to the critical value τn, either almost all or almost none of the realizations
of the epidemic affect a non-negligible proportion of the population.

3 Epidemic models on networks

Classical results on epidemic models can be found in textbooks such as [2], and
a more recent extensive account is [3]. Since around 2000 there has been inten-
sive study of models with explicit network structure; recent surveys are [6] from
the statistical physics viewpoint and [4] from the epidemiology/applied proba-
bility viewpoint. But all this literature focusses on the analysis of specific mod-
els. Intuitively one expects that for any plausible parametric epidemic model,
there will be some region in parameter-space where the epidemic affects (with
high probability) only a small proportion of a large population, another region
where it affects (with high probability) a non-negligible proportion, with a lower-
dimensional “critical” interface. This dichotomy is certainly true in well-studied
specific models, but we know of no attempt at very general results. Indeed,
discussion in the survey papers cited above and in [5] mentions the difficulty in
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modeling population heterogeneity realistically in a specific model, whereas our
setting allows arbitrary heterogeneity.

Note also that the classical way of viewing the sub/supercritical dichotomy
is via an “effective growth rate” R0, the number of new infectives arising from
a typical infective, with the sub/supercritical dichotomy determined by R0 < 1
or R0 > 1. But this does not apply to typical spatial models with short-range
interaction, so is not helpful for the very general results we seek. In fact the
“R0 > 1” condition is better interpreted as the condition for order n infectives
to occur in O(log n) time.

4 A conjecture for a very general SIR model on net-
works

The proof of Proposition 1 relies on the Exponential distribution assumption
but (intuitively) such results must hold much more generally. Let us formulate
a conjecture for a very general SIR model on networks. Recall R stands for
recovered: infectives will after a time recover and not be susceptible in future.

We need to define a set H of distribution functions “not wildly different from
Exponential”. Let us tentatively use the following definition. For constant β > 1

write H(1)
β be the set of distribution functions for densities f on (0,∞) with

mean 1 and f(x) ≤ β exp(−x/β). Then write Hβ for the set of distributions of

cY where Y has distribution function in H(1)
β and 0 < c <∞.

We model an SIR epidemic on population size n as follows. Introduce a
virulence parameter 0 < θ < ∞ and a “difference from Exponential” parameter
β > 1.

• Each individual v, if infected, remain infectious for a random time with
some distribution ι(v, θ).

• For each individual v and parameter θ the distribution function for ι(v, θ)
is in Hβ.

• For each individual v, the distributions ι(v, θ) are stochastically increasing
as θ increases.

• For each unordered pair (vy), infection will spread across the undirected
edge vy with some probability pvw(θ).

• For each unordered pair (vy), the function θ → pvw(θ) is in Hβ or is the
zero function.
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We want to conjecture that an analog of Proposition 2 remains true at this level of
generality. Consider a sequence of such models with n→∞, and write C ′n,kn(θ)
for the number of individuals ever infected, given kn initial infectives. As before,
suppose this number is o(n) for very small θ and is not o(n) for very large θ.
That is we assume that, for kn →∞ sufficiently slowly,

lim
n

EC ′n,kn(θ1)/n = 0; lim
n

EC ′n,kn(θ2)/n > 0. (5)

for some 0 < θ1 < θ2 <∞.

Conjecture 3 Under the assumptions above, there exist deterministic θ∗n ∈ [θ1, θ2]
such that, for all kn →∞ sufficiently slowly,

C ′n,kn(θ∗n − δ)/|Vn| →p 0, C ′n,kn(θ∗n + δ)/|Vn| �p 0

fior all fixed δ > 0.

We have not attempted to prove the conjecture; a possible start would be to
look for a proof of Proposition 1 in the case where distributions were in a class
such as Hβ.
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