
Efficient Networks and Enumerations on Forests:

Master’s thesis in Mathematics

Tamar Lando

April 13, 2009

0

1 Networks

1.1 Introduction

We study networks connecting n points in an area-n square. By network
we mean a collection of straight line segments between points in the square.
These points and line segments can respectively be thought of as cities and
roads–the network then, is a collection of roads that allows us to travel from
any city to any other city. Each such network N will have a total network
length, len(N). In building such a system of roads one might measure
efficiency in terms of the total length of the network constructed, with longer
networks less efficient. But one might also measure efficiency in terms of
the shortness of the path between any two points. In particular, if the
Euclidean distance between points i and j is d(i, j), and the shortest path in
the network between these points has length l(i, j), the ratio r(i, j) = l(i,j

d(i,j)
is a measure of how efficiently one can travel between these two points.
Generalizing over all pairs of points, we define the following R-statistic for
the entire network: R(N) = maxi 6=j r(i, j), where the maximum is taken over
all pairs of distinct points i and j. Intuitively, there is a tradeoff between
these two features of the network: shorter networks will tend to have a poor
R-statistic, and networks with a small R-statistic will tend to be longer.

In this paper we study the worst case tradeoff between network length
and route-length efficiency. In particular, we consider only networks whose
length grows linearly with n, and look at the worst case R-statistic for a
given network, depending on where the points are positioned with respect
to one another in the n-area square. More formally, for any r > 1 and any
set of n points {z1, . . . , zn}, let

Lr(z1, . . . , zn) = inf{len(N) : R(N) ≤ r}

where the infimum is taken over all networks N that connect the points
z1, . . . , zn. (Thus Lr(z1, . . . , zn) is a measure for any fixed n-tuple of points.)
We can now define a function θ(r) that describes the worst case tradeoff
between route-length efficiency and normalized network length:

θ(r) = lim sup
n

sup
zn

n−1Lr(z1, . . . , zn) (1)

where the supremum is taken over all sets of points {z1, . . . , zn} in the square
(and where we take the lim sup because we are interested in what happens
asymptotically as n goes to infinity).

Although we cannot hope to compute θ(r) explicitly for a given value of
r, we can try to bound it from above, by showing how to construct a network

1

that achieves the desired R-statistic around any positioning of n points in
the square. In the first section that follows, we analyze a group of networks
based on the regular triangular, rectangular and hexagonal lattices, and
show that they bound θ(r) for r = 2. In the following section we consider
long networks with arbitrarily small R-statistics, and show that for a given
r arbitrarily close to 1, we can bound θ(r) by a constant (this is not the case
for r = 1, where θ(r) grows as a polynomial in n).

1.2 Triangular, Rectangular and Hexagonal Lattice Networks

In this section we provide a construction of a network based on the regular
triangular lattice that gives upper bounds of x, y, z for θ(r1), θ(r2), andtheta(r3)
respectively. We then show the construction can be extended to a rectan-
gular and hexagonal lattice, and that these other constructions give bounds
of ... By regular polygonal lattice we mean a lattice composed of equilateral
polygons of equal size.

Construction: We construct the network as follows. Begin by superimpos-
ing a regular triangular lattice on the area-n square containing the n points
(cities). Let s be the side length of a single edge of the triangular cells. Each
of our n points inhabits exactly one cell of the triangular lattice (unless it
lies on the lines of the lattice itself) and we connect these points to the
lattice by drawing a line segment from the point perpendicular to each of
the three edges of the cell. This produces a connected network, N.

Figure 1. Network constructed around the regular triangular lattice with
perpendicular access roads.

2

In what follows it will be useful to talk about length and ratio for a given
path, not just for a pair of points as defined in the introduction. Thus for
any path p, let len(p) be the length of p, and let r(p) = len(p)

d(p) where d(p) is
the distance between the endpoints of p. We will sometimes refer to r(p) as
the ”path ratio.”

Claim 1. The R-statistic, R(N), for the network constructed above is 2.

To prove the claim, we need the following lemma:

Lemma 1. Let x1, . . . , xn be a sequence of n colinear points in the plane
for some n ≥ 2. Let pi be a path connecting xi to xi+1, and let P be the
path from x1 to xn produced by concatenating paths pi for 1 ≤ i ≤ n − 1.
Then

r(P) ≤ max
1≤i≤n−1

r(pi)

(where r(P) and r(pi) are, respectively, the path ratios for paths P and pi,
1 ≤ i ≤ n− 1).

Proof of Lemma 1. Let D be the Euclidean distance between i and j, and
let di be the Euclidean distance between endpoints of path pi. Then,

len(P) =
∑
i

len(pi) =
∑
i

ri di ≤ max
i
ri
∑
i

di = max
i
ri D

where the last equality holds because points x1, . . . , xn are colinear. Dividing
both sides by D we get the desired result.

Proof of Claim 1. We let i, j be two arbitrary points (cities) from among

the n points positioned in the square, and we show that we can always find
a path between the two points along the line segments of the network with
path ratio at most 2. There are two cases, depending on whether or not i
and j inhabit the same cell of the lattice. Let 4i and 4j be the triangles
inhabited by i and j respectively.

Case (i): 4i = 4j.
Note that when we have two points in the same triangle, their access

roads intersect at 120-degree angles. This means that in the worst case
scenario (from the point of view of path ratio), points i and j are positioned
at an equal distance away from the vertex of a 120-degree angle, and the
path ratio r(i, j) = l(i,j)

d(i,j) is 2√
3
, which is smaller than 2.

Case (ii): 4i 6= 4j.

3

Here we construct a path between i and j as follows. Begin by drawing
a line segment from i to j (dashed in figure 2). Let A be the point where
the line segment intersects 4i and let B be the point where the line segment
intersects4j. In general, the line segment from i to j will traverse a series of
triangles of the lattice, and we label the points where it intersects the edges
of these triangles successively as q2, . . . , qn−1, letting A = q1 and B = qn.
Note now that q1 and q2 are on the first triangle traversed, q2 and q3 are
on the second triangle traversed, etc. In general, we can travel from qi to
qi+1 by navigating around the edges of the ith triangle. In particular, this
means navigating around a single 60 degree angle. We call the path from
qi to qi+1 constructed in this way p2i (1 ≤ i ≤ n − 1). Concatenating p2i

for 1 ≤ i ≤ n− 1, we have a path p2 from A to B along a series of colinear
points q1, . . . , qn.

To complete the path from i to j, we need to append to p2 a path from
i to A, and another path from B to j. But this is easy, because there are
perpendicular access roads connecting i to the line segment where A lies,
and connecting j to the line segment where B lies. Call the path from i to A
defined in this way p1 and call the path from B to j defined in this way p3.
Putting segments p1, p2 and p3 together, we have a (non-optimal) path, P,
from i to j. (In figure 2, segment p2 is marked in red and segments p1 and
p3 are marked in blue.)

Figure 2. Path P from i to j.

By Lemma 1, since points q1, . . . , qn are colinear, we know that r(p2) ≤
max1≤i≤n−1 r(p2i) Each of these paths navigates a single 60-degree angle,
giving a worst-case path ratio of 2. So we have r(p2) ≤ 2. Again by Lemma
1, since i, A, B and j are colinear, we have:

r(P) ≤ max
1≤i≤3

r(pi)

But clearly r(p1), r(p3) ≤
√

2, since access roads are perpendicular to cell
edges. Thus we have:

r(P) ≤ max{2,
√

2} = 2

4

To see that this bound is sharp, we can place two points on adjacent
edges one of the triangular cells, positioned at an equal distance from the
vertex where these edges meet. The path between the points along the edges
of the triangle has path ratio 2. �

Claim 2. The total network length, len(N) for the triangular lattice net-
work constructed above, after choosing an optimal value for s (triangle side
length), is ∼ 2

√
3n. Thus, normalized network length is ∼ 2

√
3.

Proof. We leave the details of the somewhat tedious calculation to the
reader, and simply note that the access road length for each point is inde-
pendent of where the point is positioned in the triangular cell and is (exactly)
s
√

3
2 . The lattice road length is (approximately) 6n

s
√

3
(small variations oc-

cur depending on how one positions the lattice with respect to the area-n
square). This gives total network length

f(s) =
s
√

3n
2

+
6n
s
√

3

Optimizing over s we get s = 2 and f(2) = 2
√

3n.

Putting Claim 1 and 2 together, we now have an upper bound for θ(2)
(where θ is the function defined in (1):

Claim 3. θ(2) ≤ 2
√

3
We note briefly that we can easily construct networks based on the rect-

angular and hexagonal lattices in a similar fashion, by superimposing the
regular lattice on the square, then drawing access roads from each point
perpendicular to all edges of the polygonal cell the point inhabits. Again,
analyzing the R-statistic for each of these two networks involves checking
Case (i), where two points inhabit the same lattice cell, and Case (ii), where
two points inhabit distinct cells. In the rectangular network, for pairs of
points subsumed under Case (i) there is always a path with ratio at most√

2 (access roads intersect in right angles). In Case (ii) we construct a path
similar to path P above, where r(P) is bounded by the maximum of

√
2 and

the worst ratio for navigating around the edges of a single square, which
turns out to be 2. Thus we have R(N) ≤ max{

√
2, 2} and again this upper

bound is sharp by positioning two points midway along opposite edges of
a rectangular cell. Thus, the R-statistic for the rectangular network con-
structed in this way is equal to the R-statistic for the triangular network.
However, total network length in the rectangular lattice is larger than total
length in the triangular lattice (approximately 4n), so this does not improve

5

the upper bound we gave in Claim 3. (Analysis of the hexagonal lattice
is similar, but slightly complicated by the fact that access roads need not
intersect with all edges of the hexagon, depending on where the point is
positioned within the hexagonal cell.)

1.3 Long Networks with small R-statistic

We now turn to long networks with small R-statistics. In particular, we
would like to know whether for r arbitrarily close to 1, we can find a network
N such that R(N) ≤ r and len(N) is linear in n. (Alternatively, if we look
at the length of network per city, we are interested in networks where the
normalized length is constant.)

Note that for r = 1 this is not possible since the only network, N, for
which R(N)= 1 is the complete graph on n points. Assuming n is even,
we can station n

2 points arbitrarily close to one corner of the square and n
2

arbitrarily close to the opposite corner. Then for any pair of points (i, j)
where i and j are in opposite corners, we have d(i, j) ∼

√
2n. There are

(n2)2 such pairs (for n odd, there are (n+1
2)(n−1

2) pairs), so

len(N) ∼
√

2n n2

4
∼ O(n

5
2)

Given that we cannot construct a linear network for r=1, it makes sense
to ask whether we can do so for r arbitrarily close to 1. In what follows we
show, by construction, that this is indeed possible.

1.3.1 Building the network

We construct a network that contains only two angles, major and minor,
and show that between any two “good” pair of points, a path can be found
that uses only the major angle of the network. Making this angle wide
enough guarantees a sufficiently small path ratio for all such pairs. By
superimposing a finite number of rotated copies of this network, we get a
network that works for any pair of points. The details are as follows.

Fix r > 0 and let θr be called the “major” angle of the network. In-
tuitively, we would like θr to be just wide enough so that a path, p, which
navigates only around this angle has path ratio r(p) ≤ r. The worst path ra-
tio for a path navigating around a single angle is achieved when the starting
and ending points–i and j–of the path are at equal distance from the vertex

of the angle (see figure 3). Looking at figure 3, sin(θ(r)2) =
d(i,j)

2
l(i,j)

2

= 1
r(i,j) So

we set θ(r) = 2 sin−1(1
r). .

6

Figure 3. Defining θ(r).

Construction Our construction involves, again, a certain kind of lattice
with access roads connecting points (cities) to roads of the lattice. Moving
soutward along one of the vertical edges of our area-n square, we mark off
points at a fixed distance y from one another. From each of these points
we draw two lines, forming ψr and −ψr degree angles with the horizontal,
respectively. The horizontal lines–dashed in figure 4–are not themselves part
of the lattice. (We may need to extend this procedure some way above and
below the vertical edge of the square, to make sure we cover the whole square
in roads of the lattice, as in the figure).

7

Figure 4. Lattice roads.

Note that, provided that y is small enough, the lines of our lattice in-
tersect to form diamond-shaped cells, where the obtuse angle is θr and the
acute angle is, say, 2ψ(r). We call ψ(r) the minor angle of the network.
Each of the n points (or cities) inhabits exactly one of these cells and we
now draw two access roads through each point parallel to the edges of the
cell (see figure 5).

Analysis of R-statistic. For any points in the square, i and j, draw a line
between them and let φi,j ∈ [0, π) be the (positive) angle at which this line
intersects the horizontal. We would like to show that the network we have
constructed provides a sufficiently short path for all points i and j, such
that 0 ≤ φi,j ≤ ψr. Consider in particular:

Provisional Claim 4: For any points i and j, such that 0 ≤ φi,j ≤ ψr,
the ratio of shortest path distance to Euclidean distance along lines of the
network is at most r.

Let NE roads of the lattice (excluding access roads) be called “runs” and
NW roads be called “cuts.” Also, let the region between two adjacent runs

8

be called a bar (highlighted in pink in figure 5). Looking at figure 5, it turns
out the claim is true in the following cases:

(i) the two points belong to the same cell (as e and f)
(ii) the two points are in the same bar and adjacent cells (as c and e)
(iii) the two points are in different bars (as c and d)
But is false in the case,
(iv) the two points belong to the same bar, but are separated by some

number k ≥ 1 of cells (as a and b)

Figure 5. Points in the network.

The worst scenario in case (iv) is when the points are separated by one
empty cell, and are each placed arbitrarily close to the midpoint of opposite
edges (again, as a and b). To correct this, we need to add interior roads
through the center of each cell and parallel to the NE edges (see figure 6).
When we do this the worst situation in our new network is when the two
points are a quarter of the way along opposite edges. Here the path ratio
is

z
4
+z+ z

4
z = 3

2 , where z is the length of the edge of a single cell. Continuing
in this fashion, we can instead add two lines within each cell parallel to the
NE edges and equally spaced apart. Here the worst situation is where the
two points are 1

6 of the way along opposite edges of the cell and the new

9

path ratio is
z
6
+z+ z

6
z = 4

3 If we do this some finite number of times, we will
eventually produce a short enough path between all such points. Indeed, if
we partition each cell with n equally spaced lines our new worst situation
path ratio is

z
n+1

+z

z = n+2
n+1 . In order to ensure that our path ratio is smaller

than r we pick n large enough so that n+2
n+1 ≤ r or simply n = d2−rr−1e.

Figure 6. Partitioning each cell 0, 1, 2 and 3 times.

Claim 4: In the network obtained by adding n = d2−rr−1e interior roads
to each cell, the path ratio r(i, j) for all points i, j such that 0 ≤ φi,j ≤ θr
is at most r.

Proof. We divide the proof into cases (i), (ii) and (iii) listed above (case
(iv) is proved in the discussion of interior roads). In case (i) the two points,
i, j belong to the same cell. The lattice roads of such points intersect in
one of two ways, exhibited in Figure 5 by the pairs {e, f} and {e′, f ′}. The
path along access roads from e to f is “short” while the path from e′ to f ′ is
“long”. We need to show that all pairs of points i, j with 0 ≤ φi,j ≤ θr have
access roads that intersect like those of e and f. But this follows from the
fact that 0 ≤ φi,j ≤ θr. Indeed, (WLOG) let i be west of j. The NE access
road through i intersects the NW access road through j at point k, say. j
must lie below the NE access road thru i, since 0 ≤ φi,j ≤ θr. This means
that the path from i to k to j navigates around a single θr-degree angle, so
r(i, j) ≤ r.

In case (ii) the two points i, j belong to different bars. Again, let i be
west of j. Draw a line segment starting at i and ending at j, and label points
where this line intersects successive bars as y1, . . . , yn. We show there is a
“short” path between yi and yi+1 for 1 ≤ i ≤ n − 1. Concatenating such
paths, and appending an initial segment from i to y1 and a final segment
from yn to j, we get a “short” path from i to j.

Fix i, and note that yi and yi+1 are points on the boundary of the same
bar, but that yi lies on the upper boundary (call this line bi) and that yi+1

10

lies on the lower boundary (call this line bi+1). In general yi+1 is between
two “cuts,” and each of these cuts intersects both bi and bi+1. Thus we
can travel from yi along the line bi to the point where it meets the first
(westmost) cut, then follow the cut down to where it intersects line segment
between i and j. This is the first segment of our path. The second continues
along the cut until it intersects bi+1 and then travels along bi+1 to the point
yi+1. Both segments negotiate a single θr-degree angle, so by Lemma 1, the
concatenated path from y1 to yi+1 has path ratio at most r.

Figure 7. Path segment from yi to yi+1.

Concatenating segments from yi to yi+1 for (1 ≤ i ≤ n − 1) we now
have a path from y1 to yn. We need to show that there is a “short” path
connecting i to y1 and another “short” path connecting yn to j. Indeed,
take the access road thru i that intersects b1 and follow b1 to y1. This path
negotiates a single major angle of the network. We do the same for the final
segment from yn to j. It follows from Lemma 1 that the path ratio for the
path we constructed from i to j is at most r.

In case (iii) i and j are in adjacent cells in the same bar. Again, let i
be west of j. Then we can take access roads from i to the cut separating
the two cells, travel along this cut, and take an access road to j. The path
traverses two major angles of the network and the path ratio is at most r.
�

To complete the construction, we need to ensure that pairs of points
(i, j) for which 0 ≤ φi,j ≤ ψr does not hold are captured by a “copy”
of our original construction. Since ψr is constant, we can simply rotate
the lattice (not including access roads) some finite number of times, m =
d πψre, through the angle ψr and for each of these lattice copies draw the
corresponding access roads. The kth copy captures all pairs of points (i,j)
such that (k − 1)ψr ≤ φi,j ≤ kψr. Moreover, since we have m copies of the
original construction, the total network length is simply m times the original

11

network length, which (provided the length of the original network is linear
in n, as shown below) is clearly still linear in n.

1.4 Network Length

We show that the normalized length of the network we’ve constructed, when
optimizing over y, is:

2 d πψr
e
√
tan(ψr)(d2−rr−1e+ 2)

sin(ψr)

In analyzing the total network length it is useful to think separately
about the lattice, access roads and the number of rotations of the entire
construction. Letting x be the length of a “full” line in our lattice (one that
extends from one edge of the square to the opposite edge), we have cos(ψr) =√
n
x and therefore, x =

√
n

cos(ψr) . The number of lines in our construction is

(not exact) (pr + 2)
√
n
y . Multiplying the two gives total lattice length

prior to taking copies of the construction (not exact),

(pr + 2) n
y cos(ψr)

We saw above that pr = d2−rr−1e, which gives

(d2−rr−1e+ 2) n
y cos(ψr)

(2)

Letting z be the length of one edge of a single cell we have, sin(ψr) =
y
2
z

or simply, z = y
2sin(ψr) . The length of access road per point is 2z which gives

total access road length:

yn

sin(ψr)
(3)

(We now see why we required that y be constant. If y grows with n
or even

√
n the total access road length is not linear in n.) Thus the total

length of a single copy of the network is (not exact)

(d2−rr−1e+ 2) n
y cos(ψr)

+
yn

sin(ψr)

12

Optimizing for y we set:

(d2−rr−1e+ 2) n
y cos(ψr)

+
yn

sin(ψr)
= 0

which gives

y =

√
tan(ψr)(d

2− r
r − 1

e+ 2)

Therefore total optimized network length for a single copy is

(d2−rr−1e+ 2) n√
tan(ψr)(d2−rr−1e+ 2) cos(ψr)

+

√
tan(ψr)(d2−rr−1e+ 2) n

sin(ψr)

and normalized network length for a single copy is

(d2−rr−1e+ 2)√
tan(ψr)(d2−rr−1e+ 2) cos(ψr)

+

√
tan(ψr)(d2−rr−1e+ 2)

sin(ψr)

which is just
2
√
tan(ψr)(d2−rr−1e+ 2)

sin(ψr)
(4)

Finally, to “cover” all pairs of points we need m = d πψr
e copies of the

original network. Thus the final (normalized) network length is:

2 d πψr
e
√
tan(ψr)(d2−rr−1e+ 2)

sin(ψr)
(5)

Noting that,

ψr =
π − 2 sin−1(1

r)
2

we plot the normalized network length against r:

13

Figure 8. Graph of normalized network length for 1.1 ≤ r ≤ 3 (top) and
1 < r ≤ 3 (bottom).

In particular, for values r = 1.5, 2 we get roughly 18.36 and 12.89 respec-
tively.

14

2 Enumerations on forests and their Probabilistic
Expressions

2.1 Introduction

In this part of the paper we present some enumerations of labeled trees and
forests due to Jim Pitman, Bernard Harris, and Leo Katz, and explore their
probabilistic expressions. All of the results reviewed in this part of
the paper have been proved elsewhere. We begin, in Section 2, with
Cayley’s formula for the number of trees on n labeled vertices, and the usual
derivation by Prufer coding. We then show, in Section 3, how the same for-
mula can be derived as a special case of a more general enumeration of
forests involving the notion of refining sequences, due to Pitman. In Section
4, we show how to construct a uniformly distributed random tree and ran-
dom rooted forest with k components, and study the induced distribution
on the set of partitions of [n]. These results are also due to Pitman. Finally,
in Section 5, we show how the same distribution on partitions can be con-
structed from the uniform distribution on the set of mappings or functions
from [n] to [n]. These results are due to Harris and Katz. The bulk of this
literature review follows quite closely [?]

2.2 Cayley’s formula and Prufer Coding

Definition 1 A tree over a set V is a not minimally connected graph with
vertices labelled by the set V.

Definition 2 A forest over a set V is a graph whose components (maximally
connected subgraphs) form a collection of trees labeled by the sets of some
partition of V.

Thus a forest with one component is a tree.
We begin by introducing Cayley’s formula, first stated in the late 1800’s.

In this section we briefly sketch two of the more recent proofs of the formula,
the first due to Heinz Prufer and the second to Andre Joyal. Some of the
details here are left out in the interest of spending more time on the material
that follows.

Proposition 1 (Cayley’s Formula) For all positive integers n, the number
of trees over vertex set [n] is nn−2.

Proof (Prufer Coding) We construct a bijection between the set of all
trees over [n] and the set of sequences (s1, . . . , sn−2) of length n− 2, where

15

si ∈ [n] for i ≤ n − 2. It follows that the cardinality of the set of trees is
equal to the cardinality of the set of length (n−2)-sequences over [n], which
is nn−2.

Construction For a given tree, t, over [n], construct a sequence S(t) =
(s1, . . . , sn−2) as follows. In the first stage, pick the leaf with smallest la-
belled vertex. Delete the edge connecting it with it’s (unique) neighbor and
let s1 be the vertex label of this neighbor. Iterate this procedure until only
one edge is left, recording si at stage i. Since at each stage we delete one of
the n vertices and we stop when only two vertices are left, the length of the
sequence constructed is (n− 2).

A moment’s thought shows that the following algorithm reconstructs a
tree from its code. Indeed, the algorithm reconstructs the original tree edge
by edge in the order of deletion.

Reconstruction Algorithm Let S = (s1, . . . , sn−2) be a sequence on [n].
Let

L = [n]−
n−2⋃
i=1

{si}

i.e. the set of all x ∈ [n] that do not appear in the sequence, S. In the first
stage of reconstruction, join the least element in L with s1 by an edge, and
remove this element from L. If s1 does not appear again in the sequence,
add s1 to the set L. Repeat this procedure until the sequence S is exhausted.
There are two vertices left in L (by the last stage, all vertices have appeared
in L, and we’ve removed a total of n−2 vertices): connect these by an edge.

We need to show that the mapping we’ve defined from the set of trees
over [n] to the set of all sequences of length (n − 2) over [n] is one-to-one
and onto. To see that it is one-to-one, simply note that the reconstruction
algorithm is well-defined. To see that the mapping is onto, we need to show
that the reconstruction algorithm yields a tree for every sequence over [n]
of length n− 2. Note that at each stage the reconstruction algorithm yields
a forest and that after the final stage, we have constructed n − 1 edges. A
forest with n− 1 edges is connected, so the reconstruction algorithm yields
a tree. �

Proof (Joyal) We construct a bijection between the set of all doubly rooted
trees and the set of mappings from [n] to [n]. Letting F1,n be the set of all
trees over [n] (the reason for this notation will be apparent in subsequent
sections), this gives the identity

nn = n2 #F1,n

16

from which Cayley’s formula follows immediately.
Let f be a mapping from [n] to [n] and draw the “short diagram” of

f–i.e. the graph on vertices [n] with an arrow from x to y iff f(x) = y
for all x, y ∈ [n]. Let C be the set of vertices that are in directed cycles
of the short diagram of f, and let N be the set of vertices that are not.
(Note that C is non-empty, since we have a graph on n vertices with n
edges.) Now let (c1, . . . , cp) be the ordering of elements in C such that
f(c1) < f(c2) < · · · < f(cp), and construct a doubly rooted graph over [n]
as follows. For each (1 ≤ i ≤ p − 1), draw an edge from ci to ci+1, and let
c1 and cp be the start and end roots respectively (these may be identical).
For each non-cyclic vertex x ∈ N , draw an edge from x to f(x).

We need to make sure that the graph we constructed is a tree. Clearly
the graph has (n − 1) edges (p − 1 edges between vertices in C, and one
edge for each of the n − p vertices in N). Moreover, it’s connected, since
in the short diagram, each directed path starting at a vertex x ∈ N must
eventually reach a vertex in C. Finally, recall that any connected graph with
(n− 1) vertices is a tree.

We now show that the mapping we defined between mappings from [n]
to [n] and doubly-rooted trees is both one to one and onto. Indeed, our
mapping has an inverse defined on all such trees. Starting from a doubly
rooted tree, we can recover the set C by taking all vertices in the (unique)
path from the start root to the end root and choose f so that it sends the ith
smallest vertex in C to the ith vertex on the path. The remaining vertices
are elements of N and for all x ∈ N we let f(x) be the unique neighbor of x
that is closer to the path (from start root to end root) than x is. �

2.3 Refining sequences

Definition 3 A rooted forest over a set V is a forest over V, where each
component (or tree) has a distinguished vertex.

Thus a rooted forest with k component trees has k distinguished vertices,
each belonging to different trees. We let Rk,n be the set of all rooted forests
over [n] with k components and let Fk,n be the set of all unrooted forests
over [n] with k components.

Definition 4 A digraph or directed graph, is a graph where each edge has
a direction (i.e. is directed toward one of the two end-vertices).

Definition 5 If D, D* are two digraphs over a vertex set V, say D contains
D* if each directed edge in D* is also in D.

17

In what follows, all trees and forests will have vertices labeled by the set [n],
for some integer n.

We begin by introducing the notion of refining sequences of forests on [n], due
to Pitman, which allows us to derive a series of enumerations on forests. A
rooted forest can be identified with its digraph, where all edges in the digraph
point away from the root. Let a length-k refining sequence of rooted forests
over [n] be a sequence(r1, . . . , rk) of rooted forests where for (1 ≤ i ≤ k−1),
the digraph of ri contains the digraph of ri+1 and where each forest is over
the vertex set [n]. Thus e.g. a length-n refining sequence of rooted forests
on [n] begins with a rooted tree and ends with the trivial forest over [n] (n
vertices, no edges).

Proposition 2. For each rooted forest rk ∈ Rk,n, the number N(rk) of
rooted trees over [n] that contain rk is nk−1.

Proof. Fix rk ∈ Rk,n. Let N∗(rk) be the number of length-k refining
sequences (r1, ..., rk) ending in the forest rk, and note that for each tree
r1 ∈ Rk,n containing rk, the number of length-k refining sequences where
the first term is r1 and the last term is rk is (k− 1)! (There are k− 1 edges
that must be deleted from r1 and they can be removed in any order). Thus
we have:

N∗(rk) = N(rk)(k − 1)!

To count N∗(rk), consider choosing a refining sequence in reverse order–that
is, building a tree from the forest rk ∈ Rk,n. At each stage we add a single
edge between unconnected vertices in such a way that the resulting graph is
still a forest. We do this by choosing one of the n vertices in the forest and
connecting it with the root of a different tree. (We can only join the vertex
to a root since otherwise the edges of our resulting digraph will not all point
away from the roots.) Thus, at the first stage we have n(k − 1) edges to
choose from, at the second stage we have n(k − 2) choices and so on. We
must add k− 1 edges to get a tree, so there are N∗(rk) = nk−1(k− 1)! ways
of doing this. From (1) we have:

N(rk) = nk−1

�

Corollary 1. Cayley’s formula. Note that there is only one forest over [n]
with n components (the trivial forest) and that every tree over [n] contains
this forest. Letting k = n in the previous proposition, we see that the

18

number of rooted trees over [n] is simply N(rn) = nn−1. Dividing by n we
get Cayley’s formula for the number of (unrooted) trees over [n].

The method of refining sequences also allows us to count the number #Rk,n
of rooted forests over [n] with k components. Indeed, we count the total
number of length-n refining sequences and divide by the number of refining
sequences containing a particular rk ∈ Rk,n (which depends only on k). The
total number of length-n refining sequences (r1, ..., rn) is just the number of
ways to build a tree, edge by edge, from the trivial forest over n vertices
(since each such refining sequence must end in the trivial forest). As above,
in the first stage of the construction, we can add any of the n(n-1) edges. In
the second stage, we can add any of the n(n−2) edges, etc. There are n−1
stages in the construction (one for each edge added) so the total number
of sequences is nn−1(n − 1)!. To count the number of such sequences that
contain some particular rooted forest rk ∈ Rk,n, we count the number of
“ways up” (from the rooted forest to a tree) and multiply by the number of
“ways down” (from the rooted forest to the trivial forest). As we saw above,
the first of these numbers is just nk−1(k − 1)!. The number of ways down
is (n− k)!, since rk has (n− 1)− (k − 1) edges, which we can delete in any
order. Finally, dividing these two expressions, we see that

#Rk,n =
nn−1(n− 1)!

nk−1(k − 1)!(n− k)!
(6)

We turn now to unrooted forests, and derive the unrooted analog of Propo-
sition 1. For a given unrooted forest fk ∈ Fk,n with k components, let
n1, ..., nk be the sizes of component trees. Unlike Proposition 1, the number
of trees containing a particular (unrooted) forest depends in general on the
sizes n1, ..., nk.

Proposition 3. For each (unrooted) forest fk ∈ Fk,n, with component sizes
n1, ..., nk, the number N(fk) of (unrooted) trees over [n] that contain fk is

(
k∏
i=1

ni)nk−2.

Proof. We count the number of rooted trees that contain fk with directions
of edges ignored (i.e. a rooted tree contains an unrooted forest if there is
some way of assigning directions to edges such that containment follows).
Each such tree is obtained uniquely by first choosing roots for all k compo-
nent trees of the unrooted forest, then picking from one of the rooted trees

19

over [n] that contain this rooted forest. There are (
k∏
i=1

ni) ways of choosing

roots, and (by Proposition 2) nk−1 trees for each rooted forest. Multiplying
the two we get

nN(fk) = (
k∏
i=1

ni)nk−1 (7)

and dividing by n gives the desired enumeration.
Note that we cannot use the same method as before (dividing the total

number of refining sequences by the number of sequences containing a par-
ticular forest) to derive an enumeration of Fk,n, the set of unrooted forests
with k components, because the number of refining sequences containing a
particular k-component forest depends in general on the sizes of component
trees.

We can, however, count the number N∗n1,...,nk
(fk) of refining sequences

(on unrooted forests) that contain a given forest fk ∈ Fk with component
sizes n1, ..., nk:

N∗n1,...,nk
(fk) = (

k∏
i=1

ni)nk−2(k − 1)!(n− k)! (8)

(Count the number of trees containing fk and multiply by the number
of sequences in which edges can be deleted, which is just (k − 1)!(n− k)!)

We can also count the total number of refining sequences on unrooted
forests over [n], by counting the number of (unrooted) trees and multiplying
by the number of sequences in which all n− 1 edges can be deleted. Using
Cayley’s formula, this is just:

nn−2(n− 1)! (9)

2.4 A probability distribution on labelled forests and parti-
tions of [n]

2.4.1 Distributions on the set of rooted and unrooted forests

Using the enumerations from the previous section, we now study the prob-
ability distribution on Rk,n constructed by choosing uniformly from among
all refining sequences of rooted forests over [n]. In particular, choosing uni-
formly from all such sequences and selecting the kth component, we get a
random k-component forest Rk, which has uniform distribution over the set

20

Rk,n. The following theorem states that we can achieve the same distri-
bution by choosing uniformly at random from among all trees over [n] and
deleting (uniformly) k−1 edges, or by starting from the trivial forest over [n]
and building a k-component forest by adding edges according to the given
coalescent condition. More formally:

Proposition 4. The following three descriptions of the distribution of a
random refining sequence (R1, ..., Rn) of rooted forests over [n] are equivalent
and yield the uniform distribution on Rk,n for (1 ≤ k ≤ n):

(i)Choose R1 uniformly from the set of all rooted trees over [n] and let
(E1, . . . , En−1) be a uniformly chosen permutation of the n− 1 edges in R1.
For (1 ≤ k ≤ n), Rk is the rooted forest with k components obtained by
deleting the first n− 1 edges in the permutation (E1, . . . , En−1) from R1.

(ii)Rn is the trivial rooted forest over [n], and for (2 ≤ k ≤ n), Rk−1 is
obtained from Rk by adding an edge chosen uniformly at random from
among the n(k − 1) edges that, when added, yields a forest with k − 1
components.

(iii)(R1, ..., Rn) is a refining sequence of forests over [n] chosen uniformly
from the set of all (n− 1)!(n)n−1 such sequences.

Proof.
Fix rk ∈ Rk,n. We show that

Prob(Rk = rk) =
1

#Rk,n
=

1(
n−1
k−1

)
nn−k

for each of the constructions given in (i), (ii) and (iii).
(i) For each rk ∈ Rk,n, Prob(Rk = rk) is just the probability of picking a

tree that contains rk times the probability of picking a “good” permutation
of edges. But note that the number of such good permutations is (k−1)!(n−
k)! since we require only that the first (k−1) edges in the sequence be those
that are absent in the k-forest, rk. We have:

Prob(Rk = rk) =
N(rk)

#trees over [n]
(k − 1)!(n− k)!

(n− 1)!

=
nk−1

nn−1

(k − 1)!(n− k)!
(n− 1)!

=
1(

n−1
k−1

)
nn−k

21

(ii) We can think of the coalescent process described in (ii) as the process
of constructing a refining sequence (R1, . . . , Rn) in reverse order (i.e. starting
from the trivial forest), where according to (ii) the probability P (Rk = rk |
Rk+1 = rk+1) for any rk containing rk+1 is just 1

n(k−1) for (1 ≤ k ≤ n− 1).
This means that the probability of constructing a given sequence (r1, . . . , rn)
from the original (trivial) forest is 1

n(n−1) n(n−2)...n(1) = 1
nn−1 (n−1)!

–i.e. the
probability is the same for each sequence. We count the number of such
sequences containing rk and multiply by this probability to get

P (Rk = rk) =
nk−1(k − 1)!(n− k)!

nn−1(n− 1)!
=

1
#Rk,n

(iii) As in (ii), for any rk ∈ Rk,n, the number of refining sequences
(r1, . . . , rn) containing rk depends only on k (and not on any other features
of the particular forest rk), so we get a uniform distribution over the set
Rk,n.�

We now state the analog of Proposition 4 for unrooted forests. Here,
however, the uniform distribution on refining sequences of unrooted forests
does not give the uniform distribution on the set Fk,n for 2 ≤ k ≤ n−1. This
is because the number of such refining sequences that a particular unrooted
forest belongs to depends on the sizes of its tree components, and in general,
forests where component sizes are more evenly distributed occur in more
refining sequences than forests where tree sizes are unevenly distributed.
(Since there is only one component size for unrooted trees, this distribution
is uniform over the set of unrooted tres, F1,n.)

Proposition 5. The following three statements describe the same distri-
bution on the set of refining sequences (F1, ..., Fn) and in particular imply
that for each fk ∈ Fk with tree component sizes n1, ..., nk,

P (Fk = fk) =

(
k∏
i=1

ni)

nn−k
(
n−1
k−1

) (10)

(i′) Choose F1 uniformly from the set of all nn−1 trees in F1,n and choose
uniformly a permutation (E1, ..., En−1) of the edges in F1. Fk is the forest
produced by deleting the first k − 1 edges of the permutation from F1, for
1 ≤ k ≤ n.

(ii′) Fn is the trivial forest over [n] and for 2 ≤ k ≤ n, given Fn, Fn−1, ...Fk,
the forest Fk−1 is derived as follows. If tree Ti has size ni and tree Tj has size

22

nj in Fk and i < j, then choose the pair (i, j) with probability ni+nj

n(k−1) . Now,
for any vertex a ∈ Ti and b ∈ Tj choose a with probability 1

ni
and choose

b (independently) with probabiity frac1nj . Fk−1 is the forest derived from
Fk by adding an edge between a and b.

(iii′) (F1, ..., Fn) is a refining sequence of unrooted forests over [n] chosen
uniformly from the set of all such sequences.

Proof. In (iii′), P (Fk = fk) is just the number of refining sequences con-
taining fk divided by the total number of refining sequences, which, from
(2) and (3) is just the fraction

(
k∏
i=1

ni)nk−2(k − 1)!(n− k)!

nn−2(n− 1)!
(11)

which is clearly equivalent to (5).
In (i′) P (Fk = fk) is the probability of selecting a tree that contains fk

multiplied by the conditional probability of selecting a “good” edge sequence

given we have chosen such a tree. There are (
k∏
i=1

ni)nk−2 trees that contain

fk and nn−2 trees over [n], so the first of these probabilities is

(
k∏
i=1

ni)nk−2

nn−2

Given that we have picked a tree containing fk there are (k−1)!(n−k)! good
edge sequences and (n− 1)! total edge sequences. So the second probability
is

(k − 1)!(n− k)!
(n− 1)!

Multiplying the two, we get the same probability as (5).
Note now that the construction of fk given in (i′) and (iii′) is just the

“unrooting” of the construction given in (i) and (iii) of Proposition 4 respec-
tively. So to show that (ii′) is equivalent to (i′) and (iii′), we just need to
show that (ii′) is the unrooting of the construction given in (ii). To do this,
we show that the the conditional probability, P (Fk−1 = fk−1 | Fk = fk)
that we get from (ii′) is just the probability

Prob (unrooting of Rk−1 = fk−1 | unrooting of Rk = fk)

23

Let fk be a forest with k component trees where vertex a is in tree Ti and
vertex b is in tree Tj for i < j, and let fk−1 be the forest derived from fk
by joining a to b.There are two ways this could happen in the sequence of
rooted forests.

Case 1: a is the root of Ti in Rk, and Rk−1 adds the edge from b to a
Case 2: b is the root of Tj in Rk , and Rk−1 adds the edge from a to b
Given Fk = fk the probability that a is a root of Ti in Rk is just 1

ni
and

the probability of joining a and b given that a is a root of Ti is 1
n(k−1) . So

Case 1 happens with probability 1
ni

1
n(k−1) . Likewise, Case 2 happens with

probability 1
nj

1
n(k−1) . So Prob (unrooting of Rk−1 = fk−1 | unrooting of

Rk = fk) is
1
ni

1
n(k − 1)

+
1
nj

1
n(k − 1)

=
1

ninj

ni + nj
n(k − 1)

which is just the probability of joining a and b given in (ii′). �

2.4.2 Partitions of [n]

There is a very natural mapping from the set of unrooted forests over [n]
to the set of partitions of [n], which we get by letting the vertices of each
component of the forest define a single equivalence class. In this section,
we study the distribution on the set of partitions on [n] induced by the
distribution on forests described in Proposition 5. First, some definitions.

Definition 6 A k-partition of the set [n] is a set of sets {A1, ..., Ak} where
∪ki=1Ai = [n] and the Ai’s are disjoint and non-empty.

Definition 7 For each component tree Ti in fk ∈ Fk,n (1 ≤ i ≤ k), let Ai
be the set of vertices in Ti. Then the partition Πk = {A1, ..., Ak} is the
partition of [n] induced by fk.

Proposition 6 Let Πk be the random k-partition of [n] induced by the
distribution on the random forest Fk described in Proposition 5. For any
partition {A1, ..., An} with #Ai = ni for (1 ≤ i ≤ k)

P (Πk = {A1, ..., Ak}) =

k∏
i=1

nni−1
i

nn−k
(
n−1
k−1

) (12)

Proof. Note that each forest that yields the partition {A1, ..., Ak} has
component sizes {n1, ..., nk}. Thus by Proposition 5, P (Fk = fk) for each

24

such forest fk is the same. So to prove Proposition 6, we simply multiply
the number of forests that yield the partition {A1, ..., Ak} by P (Fk = fk) for
each such forest. The number of forests that induce the partition {A1, ..., Ak}
is just the number of forests over [n1] vertices times the number of forests

over [n2], etc, which is, from Cayley’s formula,
k∏
i=1

nni−2
i . Since each such

forest, fk, has component sizes (n1, ..., nk) we have from Proposition 5 that

P (Fk = fk) =

(

k∏
i=1

ni)

nn−k(n−1
k−1)

. Multiplying the two together we get (7). �

If we now let the number of groupings, k, in our partition be random,
we can study the corresponding distribution on the set

⋃n
k=1 Pn,k of all

partitions of the set [n]. In particular, let ΠK be the random partition
given by first fixing K according to some probability distribution and then
letting the conditional probability P (ΠK = {A1, ..., Ak} | K = k) be the
distribution on Fk,n described in Proposition 5. We have:

P (ΠK = {A1, ..., Ak}) = P (K = k)

k∏
i=1

nni−1
i

nn−k
(
n−1
k−1

) (13)

In the next section we study a very different model for constructing a
random forest and determine for what probability P (K = k) in (8) this
new distribution on random forests gives the same induced distribution on
partitions of [n].

2.5 Probability distribution revisited: mappings from n to n

In what follows we let J be the set of all mappings T : [n]→ [n].

Definition 8 A point x ∈ [n] is cyclical if T k(x) = x for some positive
integer k.

We can identify a mapping T ∈ J with its short diagram (see Section 2)
by letting each element in [n] be a vertex and drawing directed edge i → j
iff T (i) = j. Note that in general, each component of the short diagram of a
mapping has a single cycle and trees that connect to (some) vertices of the
cycle. The edges of a tree in the digraph always point toward the cycle.

Given a mapping T : [n] → [n], we construct subsets of the set [n] as
follows:

25

Let M0(T) be the set of all cyclical points in T.
Let M1(T) be the set of points x ∈ [n] such that T (x) is cyclical, but x

is not.
Let M2(T) be the set of points x ∈ [n] such that T 2(x) is cyclical, but

T (x) is not.
etc.
We go on in this way until the points of [n] are exhausted. Let p be the

number of such non-empty sets. We have in general:

Mi(T) = {x ∈ [n] | T i(x) is cyclical but T i−1(x) is not}

Clearly Mi(T)(1 ≤ i ≤ p) is a partition of the set [n]. We let m0, ...,mp

be the cardinalities of the sets M0(T), ...,Mp respectively.

Proposition 7. Let S(m0,...,mp) be the set of all mappings for which #Mi =
mi for (0 ≤ i ≤ p). Then we have:

#S(m0,...,mp) = n!
m0

m1m1
m2 . . .mp−1

mp

m1!m2! . . .mp!

Proof. We count the number of ways of paritioning [n] into sets M0 . . .Mp,
which is just (

n

m0 m1 . . .mp

)
and multiply by the number of ways of connecting elements in M0(T) to
each other, times the number of ways of connecting elements in M1(T) to
elements in M0(T), times the number of ways of connecting elements in
M2(T) to elements in M1(T), etc.

The number of ways of connecting elements in M0(T) to each other is
just the number of ways of dividing m0 elements into an arbitrary number of
groups and forming a cycle from the elements of each group. Note that this
is equivalent to the problem of counting the number of ways to divide m0

people into an arbitrary number of “cliques” and seat each clique around a
circular table. It can be shown using exponential generating functions that
the solution is m0!. Clearly the number of ways of connecting vertices in
Mi to vertices in Mi−1(1 ≤ i ≤ p) is just mmi

i−1, since we can connect any
number of vertices in Mi(T) to the same vertex in Mi−1(T). Altogether we
have

#S(m0,...,mp) =
(

n

m0 m1 . . .mp

)
m0!m0

m1m1
m2 . . .mp−1

mp

26

which is equivalent to the expression above. �

Corollary. The number of mappings T : [n]→ [n] with j cyclical points is
n∑
p=1

∑
n!
jm1m1

m2 . . .mp−1
mp

m1!m2! . . .mp!
(14)

where the inner sum is taken over all sequences (m1, . . . ,mp) such that∑p
i=1mi = n− j.

Proposition 8. Let T be a random mapping from [n] to [n] with uniform
distribution over the set of all nn such mappings. Let K be the (random)
number of cyclical points in T. Then,

Prob(K = j) =
(n− 1)! j
(n− j)! nj

j = 1, . . . , n (15)

Lemma.
n∑
p=1

∑ 1
j

jm1m1
m2 . . .mp−1

mp

m1!m2! . . .mp!
=

nn−j−1

(n− j)!
(16)

where the inner sum is again taken over all sequences (m1, . . . ,mp) such
that

∑p
i=1mi = n− j.

Proof of Lemma (Algebra). To simplify, we let M = n− j. We need to
show that

n∑
m=1

∑ 1
j

jm1m1
m2 . . .mp−1

mp

m1!m2! . . .mp!
=

(M + j)M−1

M !

Expanding the binomial on the RHS, we get

(M + j)M−1

M !
=

M∑
m1=1

(
M − 1
m1 − 1

)
1
M !

jm1−1MM−m1

=
M∑

m1=1

jm1−1

(m1 − 1)!
(M − 1)!
M !

MM−m1

(M −m1)!

=
M∑

m1=1

jm1−1

(m1 − 1)!
MM−m1−1

(M −m1)!

(17)

Now letting M −m1 = M1 we have:

=
M∑

m1=1

jm1−1

(m1 − 1)!
MM1−1

(M1)!

27

Note that the second factor above is of the same form as (11) and can be
expanded similarly with respect to m2. Iterating this (an arbitrary number
m times) we get:

M∑
m1=1

jm1−1

(m1 − 1)!

M1∑
m2=1

m1
m2−1

(m2 − 1)!
· · ·

Mp−1∑
mp=1

m
mp−1
p−1

(mp − 1)!
1
mp

for m arbitrary, which is equivalent to the expression in the Lemma. �

Proof of Proposition. Prob (K=j) is just the number of mappings with j
cyclical points divided by the total number of mappings, nn, which is, from
(9), ∑n

m=1

∑
n! j

m1m1
m2 ...mp−1

mp

m1!m2!...mp!

nn

=
n! j
nn

n∑
m=1

∑ 1
j

jm1m1
m2 . . .mp−1

mp

m1!m2! . . .mp!

=
n! j nn−j−1

nn(n− j)!
(by Lemma)

=
(n− 1)! j nn−j

nn(n− j)!

=
(n− 1)! j
(n− j)! nj

where the inner sum is again taken over all sequences (m1, . . . ,mp) such
that the mi’s sum to (n− j) �

Aside. We can use the above enumeration to study the probability that
the short diagram of a uniform mapping from [n] to [n] is connected, and to
give an alternative proof of formula (1) for #Rk,n. The first of these results
is due to Katz.

Proposition 9. The probability that a uniform mapping from [n] to [n] is
connected is

(n− 1)!
nn

n−1∑
j=1

nn−j

(n− j)!

Proof. Note that a connected mapping from [n] to [n] has only one cycle
(since such mappings always have one cycle per component). We find the
(compound) probability that a random uniform mapping is connected and
has cycle length j, and then sum over j.

28

Fix 1 ≤ j ≤ n. Let M0,M1, . . . be defined as above. Then for any
sequence (m1, . . .mp) such that

∑p
i=1mi = n− j, the number of connected

mappings from [n] to [n] where M0 = j and Mi = mi for (1 ≤ i ≤ p) is
clearly (

n

j m1 . . .mp

)
(j − 1)! jm1 m1

m2 . . .mp−1
mp

(We count the number of ways of choosing j cyclical points, m1 vertices for
M1, m2 vertices for M2, etc., and then multiply by the number of ways
to arrange the j cyclical points in a cycle, times the number of ways to
attach the vertices in Mi to the vertices in Mi−1 for (1 ≤ i ≤ p). Note
that attaching points in this way ensures that the mapping is connected.)
Summing over all sequences (m1, . . .mp) where

∑p
i=1mi = n− j and again

over p, we see that the number of all connected mappings from [n] to [n]
with j cyclical points is ∑

p

∑(
n

j m1 . . .mp

)
(j − 1)!jm1 m1

m2 . . .mp−1
mp

=
∑
p

∑
n!

1
j

jm1 m1
m2 . . .mp−1

mp

(m1)! . . . (mp)!

which, by the Lemma, is just

n!
nn−j−1

(n− j)!

Dividing by the total number of mappings, and letting T be a a uniform
random mapping from [n] to [n] we see that

P (T is connected
⋂

T has j cyclical points) =
n!
nn

nn−j−1

(n− j)!

Summing over j we now have:

P (T is connected) =
n−1∑
j=1

P (T is connected
⋂

T has j cyclical points)

=
n−1∑
j=1

n!
nn

nn−j−1

(n− j)!

=
(n− 1)!
nn

n−1∑
j=1

nn−j

(n− j)!

29

where the upper index in the sum is n − 1 (and not n) since the short
diagram of a connected mapping on [n] with n cyclical points would have
only n− 1 edges. �

We would like to associate with each mapping T : [n]→ [n] a rooted forest,
and then, as in the previous section, study the induced distribution on the set
of partitions of [n] when we take the uniform distribution on all mappings.
For each such mapping, T, let D(T) be the short diagram of T. In general,
as noted above, the components of D(T) consist of a single cycle and trees
connected to the cyclical points, with all edges pointing toward the cycle.
To transform this into a forest, we simply delete all edges between cyclical
points, and reverse the direction of the remaining edges. In our new graph,
R(T), all cyclical points are transformed into roots of component trees.

We can now define the function φ : J →
⋃n
k=1Rk,n such that φ(T) =

R(T) for all T ∈ J where J is the set of mappings from [n] to [n]. Note
that φ is not one-to-one (but is onto), since in general the roots of any
given forest might have been attached to one another in the short diagram
in any number of ways. Indeed, for any particular forest r ∈ ∪nk=1Rk,n the
cardinality of the set φ−1(r) = {T ∈ J | φ(T) = r} depends only on the
number of tree components in r, and is equal to the number of ways in
which we can group together the roots of each tree, and connect each group
to form a cycle. We’ve seen above that for a forest with k roots, this is just
the problem of dividing k people into cliques and seating each clique around
a circular table. So for any forest rk with k components, there are k! ways of
connecting the roots, hence k! mappings that get sent to rk by the function
φ.

This means that if we take the uniform distribution on the set of map-
pings, J, the induced distribution on the set of rooted forests is uniform
on Rk,n for (1 ≤ k ≤ n). Indeed, this yields another proof of the formula
#Rk,n, as we can write:

1
#Rk,n

=P (R(T) = rk | K = k)

=
of mappings that yield rk

of mappings with k cyclical points

=
k!(n− k)!

(n− 1)!k nn−k
(from proof of Proposition 8)

=
1(

n−1
k−1

)
nn−k

So #Rk,n =
(
n−1
k−1

)
nn−k.

30

Returning to our main line of argument, for fixed k we get the uniform dis-
tribution on Rk,n for (1 ≤ k ≤ n). Looking now at the induced distribution
ΓK on the set of all k-partitions of [n] for (1 ≤ k ≤ n) (i.e. the partition of
[n] induced by taking a uniformly distributed mapping from [n] to [n] and
transforming it by φ into a forest), we have

P (ΓK = {A1, ..., Ak}) = P (K = k) P (ΓK = {A1, ..., Ak} | K = k)

Where the conditional probability is just the probability induced by the uni-
form distribution on Rk,n, and P (K = k) is (from Proposition 8) (n−1)! k

(n−k)! nk .
Comparing this to (8) we see that , as shown by Pitman,

Proposition 10 The following constructions of a random forest, F ∈
⋃n
k=1 Fk,n

give the same induced distribution on partitions of [n]:

(A) Choose a refining sequence (F1, ..., Fn) uniformly from the set of all re-
fining sequences of unrooted forests over [n], and let F be the kth component
of this random sequence with probability (n−1)!k

(n−k)!nk .

(B) Let T be a uniformly distributed mapping from [n] to [n], and let R(T)
be the rootedd forest over [n] derived by deleting edges between cyclical
points in the short diagram of T, and reversing edge directions. Finally, let
F be the unrooted forest derived from R(T) by ignoring all edge directions.

31

References

[1] Leo Katz, ”Probability of Indecomposability of a Random Mapping
Function, The Annals of Mathematical Statistics Vol 26, No.3. (Sep.,
1955)

[2] Bernard Harris, ”Probability Distributions Related to Random Map-
pings,” The Annals of Mathematical Statistics, Vol 31, No. 4. (Dec.,
1960)

[3] Jim Pitman, ”Coalescent Random Forests,” Journal of Combinatorial
Theory, Series A 85, 1999

[4] Jim Pitman, ”Enumerations of Trees and Forests Related to Branching
Processes and Random Walks,” Technical Report No. 482, Department
of Statistics, Berkeley

[5] Miklos Bona, Introduction to Enumerative Combinatorics, 2007,
McGraw-Hill, New York, NY.

[6] David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit, ”De-
launay Graphs are Almost as Good as Complete Graphs,” Discrete and
Computational Geometry, 5, 1990

[7] Giri Rarasimhan and Michiel Smid, Geometric Spanner Networks,
Cambridge University Press, 2007, New York, NY.

[8] Jim Pitman, ”Random Forests and the Additive Coalescent,” Chapter
9 of Book Notes

32

