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presented very clearly and intuitively, with some physical motivation, though with less
rigor than some may prefer. The treatment of singularly perturbed two-point bound-
ary value problems limits itself to linear second-order equations, but turning points
are allowed, both at an endpoint and at an interior point. By using a WKB approach,
Cheng is able to solve some examples with boundary layer resonance and two higher-
order turning point problems that were presumably solved incorrectly by Bender and
Orszag. The final chapter treats nonlinear oscillations. It generalizes the Poincaré–
Linstedt procedure as a renormalization of angular frequency and two-timing as a
renormalized two-scale method, and ends by illustrating the renormalization group
method.

The subtleties addressed by Professor Cheng will be of interest to experts and
more curious students who are up to handling the D (difficult) problems of Bender
and Orszag.
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As suggested by von Neumann’s famous
remark, “Mathematical ideas originate in
empirics, although the genealogy is some-
times long and obscure,” it is not al-
ways easy to identify a specific moment
at which a definition-theorem-proof mathe-
matical topic crystalizes out of more applied
questions. But this gem of a monograph,
written with a quintessentially French style
and clarity, provides a self-contained ac-
count of a recently emerged topic that will
be seen as a cornerstone for future theoret-
ical developments.

The basic idea of stochastic fragmenta-
tion is to start with a unit mass particle. By
time t this has split into particles of masses
(xi), where in the conservative case we re-
quire

∑

i
xi = 1 and more generally we re-

quire
∑

i
xi ≤ 1. Different particles evolve

independently, a mass-x particle splitting
at some stochastic rate λx into particles
whose relative masses (xj/x, j ≥ 1) follow

some probability distribution µx(·). (So the
model neglects detailed three-dimensional
geometry; the shape of a particle is as-
sumed not to affect its propensity to split,
and different particles do not interact.) Es-
pecially tractable is the self-similar case,
where µx = µ1 and λx = xα for some scal-
ing exponent α. Such processes are closely
related to classical topics in theoretical and
applied probability—the log-masses form a
continuous-time branching random walk,
and the mass of the particle containing
a tagged atom forms a continuous-time
Markov process on state space (0, 1]. Chap-
ter 1 gives a clear description (assuming a
first-year graduate knowledge of measure-
theoretic probability at the level of [4], say)
of the general setup, laws of large numbers
for the mass spectrum of all particles and
for the largest particle mass, the useful-
ness of additive martingales in the α = 0
(“homogeneous”) case, and the fact that for
α < 0 the mass disappears (“into dust”) at
some finite time even though the evolution
equation appears mass-conserving.

One abstract, though conceptually sim-
ple and (where applicable) powerful, way
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of thinking about n → ∞ limits of random
n-element structures is as follows. Within
the n-element structure pick k random ele-
ments, look at the induced substructure on
these k elements, and take a limit (in distri-
bution) as n → ∞ for fixed k. Within the
limit random structures (Sk, say) the k el-
ements are exchangeable, and the distribu-
tions are consistent as k increases and there-
fore define an infinite structure S∞ which
for many purposes serves as an n → ∞
limit of the original n-element structures.
For instance, the historically second use of
this method was in a formalization of contin-
uum random trees as rescaled limits of finite
random trees [1]. Historically the first use
was by Kingman in his study of partitions
on n genes (same site in different individu-
als) into allelic types. Here the limit space
of interest is the space of unordered count-
able (xi), where xi > 0,

∑

i
xi = 1. An

elementary formalization of this space uses
the decreasing rearrangement of (xi). In-
stead, the methodology above is to consider
a partition of the unit interval into subinter-
vals of lengths xi, take independent uniform
random variables (U1, . . . , Uk) to construct
a random partition Sk of {1, . . . , k} based
on which Ui fall into common subintervals,
then let k → ∞ to obtain a random in-
finite exchangeable partition. The point is
that a random unordered countable (xi) has
the same representation as an infinite ex-
changeable partition, and Kingman’s paint-
box theorem identifies the general infinite
exchangeable random partition as arising
in this way. Chapter 2 describes this gen-
eral setup and the particular case of the
two-parameter Poisson–Dirichlet distribu-
tion [6], which turns out to play a central
role in several different aspects of random
partition theory.

Chapter 3 returns to stochastic fragmen-
tation. What allowed reduction (in Chapter
1) to classical results was the existence of
a discrete genealogical tree, because parti-
cles survive for strictly positive time before
splitting. But the most general notion of
stochastic fragmentation allows continual
splitting off of small masses; to handle this
rigorously requires more sophistication, and
here the “exchangeable random partition”
setup in Chapter 2 turns out to be use-
ful. In particular, Chapter 3 characterizes

the general self-similar fragmentation pro-
cess. This theory is closely analogous to the
theory of Lévy processes, the subject (not
coincidentally) of a previous book [3] by the
author.

Coagulation (this word, introduced in
German in [7], sounds strange to the na-
tive English speaker to whom it suggests
blood clotting; coalescence seems a more
apposite English word) concerns models of
clusters joining together. Intuitively, coales-
cence and fragmentation are time-reversals
of each other, and there are several fasci-
nating examples of special cases where a
precise duality relation exists and is useful,
but somewhat surprisingly there seems to
be no general precise duality relationship
within the usual stochastic models.

One setting for stochastic coalescence is
to have n particles, initially in single particle
clusters, and let clusters merge according to
a kernel κ(x, x′) indicating the rate (prob-
ability per unit time) at which a typical
pair of clusters of sizes x and x′ may merge.
There is an intuitively natural hydrodynam-
ical limit, that is, differential equations for
the relative proportions yi(t) of clusters of
size i in the n → ∞ limit, and this Smolu-
chowski coagulation equation has a long his-
tory in several areas of science such as phys-
ical chemistry, as indicated in the survey [2].
Recent theoretical work has made rigorous
the connection between the stochastic and
deterministic models, and part of this is
described in Chapter 5. Chapter 5 also de-
scribes the surprising connection between
the additive (κ(x, x′) = x + x′) stochastic
case and a fragmentation process involving
random trees, as well as the more obvious
identification of the multiplicative case with
the process of component sizes in a random
graph process.

In population genetics, one can trace
backwards in time the “genealogy” (lines
of descent) of the alleles at a specific site of
the genome in a population of size n. Un-
der simplified assumptions (random mating
and random numbers of offspring) the mean
number of generations back to the most re-
cent common ancestor is of order n. King-
man’s coalescent describes the n → ∞ limit
process in rescaled time; each pair of lines
of descent coalesces at constant stochastic
rate 1. Chapter 4 describes this specific
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process and expresses it more abstractly in
terms of exchangeable random partitions.
This leads to an elegant general theory of
exchangeable coalescents, which eliminates
the “only binary merging” aspect of King-
man’s coalescent, and is interpretable as
n → ∞ limit genealogies of more general
models in population genetics.

The theoretical probability research top-
ics of this book have been developed over the
last ten years, and while the text material
is not intended to be at today’s front line of
research in this active topic, the comments
at chapter ends give useful and remarkably
complete references to subsequent research.
Pitman’s lecture notes [5] give a more com-
pressed treatment of a broader range of
topics (partly overlapping the topics of this
book) relating probabilistic combinatorics
to stochastic processes.

As befits the first theory monograph,
there is a certain emphasis on abstract
structure which gives this book a quite dif-
ferent style than previous expository writing
on these topics, but it succeeds wonderfully
as an authoritative account of the setup
and the key results on fragmentation and
coalescence.
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Does a ragged rocky coastline hum when
the sea churns against it?

We are all familiar with the clamped vi-
brating string and the associated eigenvalue
problem. The string is supposed to be in-
finitely thin and its displacements u(x) to
be infinitesimally small, yet its mass and
elasticity are finite. Elementary calculus
applied to this model tells us that its be-
havior is governed by the Dirichlet eigen-
value problem −&u = λu for x ∈ [0, 1]
with u(0) = u(1) = 0, where & denotes the
one-dimensional Laplacian d2/dx2.

But what you may not have thought
about is that this classical problem con-
tains self-similarity. For example, the real
interval [0, 1] is the union of two simili-
tudes, of scaling factor one-half, applied to
it. Also, if G is the graph of an eigenfunc-
tion for eigenvalue λ, then T1(G)∪T2(G) is
the graph of an eigenfunction for the eigen-
value 4λ, where T1(x, y) = ( 1

2x, 1
2y) and

T2(x, y) = ( 1
2x + 1

2 , − 1
2y). Starting from

such self-similarity information you can de-
duce properties of &. For example, you
can infer that the spectral density of the
limit of the family of discrete Laplacians
{&m}∞

m=1, where &m is represented by the
m-by-m matrix







−2 1 0 0
1 −2 . 0
0 . . 1
0 0 1 −2







,

is the natural invariant measure on the Ju-
lia set for z → z(4 − z). (Note that it is the
sequence {4m&m}∞

m=1 which converges to
&.) You can also gain new insights into the
forms of the eigenfunctions {sin nπx}∞

n=1,
the Gauss–Green formulas, the spectral di-
mension, and so on.


