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Draft review by David Aldous

The field of spatial networks is fascinating to me, partly because such net-
works are easy to visualize and indeed are familiar from maps, and partly
because problems and models have arisen independently from many diverse
sources, and methodologies have ranged across the spectrum from theorem-proof
mathematics to heuristics to data analysis. Seeking to cover such a spectrum
within any particular field, at an introductory level, is very challenging, and so
such books are quite rare. The first half of the book (Chapters 1-10) focusses on
descriptive statistics relevant to the type of questions one can ask about network
structure, and the second half (Chapters 11-20) describes and studies a range of
network models. Being written by a statistical physicist, the book has a particu-
lar style that may be unfamiliar to mathematicians. The style is that of a survey
— outlining numerous results (around 500 papers are cited) via descriptions of
statistics and models and using what I would call back-of-envelope calculations
and simulation results together with real world data examples. Very different
from a typical mathematical textbook or monograph which goes deeply into
a few topics via a systematic development of theory. Fortunately the book is
mostly technically undemanding, meaning it should mostly be accessible to an
undergraduate mathematics student.

A graph, in discrete mathematics, is an abstract set of vertices and edges,
and the word network is best considered to mean a graph with some context-
dependent extra structure. In contrast, a spatial network is embedded in the
plane. That is, the vertices have specific positions in the plane. Familiar real-
world examples are communication networks such as road, railway and fiber-
optic networks, and distribution networks such as electricity, gas and water
supply. In those cases the edges are also explicitly situated in the plane; in other
examples such as airline routes or wireless communication the edges are implicit.
Realistic modeling of any one real-world network would involve many intricate
details of population and geographical features. The field under consideration
tends to stand back from such details and instead studies relations between
statistical features of networks, and how these features affect economic or other
activities involving the network. Talking about statistical features in the first
half of the book naturally suggests the consideration of probability models in
the second half.

The field of spatial networks touches upon, though is conceptually different
from, surprisingly many well-developed areas of theorem-proof mathematics,
noted in this review as (a, b, ¢, ...). There is (a) the classical theory of
random graphs [5, 9, 10, 16] centered upon the simplest Erdés-Rényi model, and



since 2000 a vast literature (b) on preferential attachment, “small worlds” and
related models has appeared. But this is mostly not spatial. Non-random (c)
planar graphs (Chapters 2-3) are classical [14], and also there exists a technically
sophisticated recent literature studying the random case, under the phrase (d)
random planar maps [4, 12]. However this is not truly spatial, in that it identifies
isomorphic graphs, so there are only a finite number of n-vertex planar graphs.
The resulting model of uniform random maps is very interesting as mathematics,
and is related to the (rather speculative) physics notion of quantum gravity,
but has no apparent relevance to the everyday networks within direct human
experience.

Chapter 4 starts by observing that several of the standard descriptive statis-
tics for general networks are (in practice) irrelevant for spatial networks. In
particular, the much-studied context of power-law tails for distribution of ver-
tex degrees (number of edges at a vertex) is implausible — the spatial setting
imposes severe constraints on the degree of a node and its distribution which is
generally peaked around its average” (section 4.1.1). As one would guess, for
urban road networks the average is around 4. Other uninformative (in the spa-
tial setting) statistics include clustering coefficients and assortativity measures.
A more surprising empirical observation is that edge lengths (relative to their
average) in areas of different population density (urban or rural) have roughly
the same distribution (section 4.1.2), an observation lacking any plausible theo-
retical explanation. Real world spatial networks invariably have some notion of
traffic flow and some notion of routes between vertices, and the study of routes
is perhaps the most fundamental issue for spatial networks. In simple models,
there are two notions of the length of a route. Hop-length counts the number of
edges in the route, in other words imagines each edge having length 1. Or the
model may include real-valued edge-lengths (interpretable as transit time) and
the sum of such edge-lengths is what I will call the geometric-length of the route.
The latter seems more realistic and also more natural mathematically, because
(for generic edge-lengths) the shortest route will be unique for geometric-length,
whereas hop-lengths are small integers and so there will typically be multiple
shortest hop-length routes.

One vague general and much-studied question: which vertices or edges are
important in the sense of having heavy traffic, that is being in many routes?
This in turn should relate to which edges are critical in the sense that their
failure would have substantial effect on the functioning of the network. This
general issue, called betweenness centrality, is the topic of Chapter 5. The sim-
plest formulation is to consider all start-end pairs (vq,v) and their shortest
routes, and define (in the geometric-length case) BC(v) to be the proportion
of such routes that pass through v. In the hop-length case one needs the more
awkward definition of BC(v) as the average, over pairs (v, v2), of the proportion
of shortest-hop-length routes that pass through v. Chapter 5 outlines calcula-
tions of BC for simple examples of networks (grids and trees) and also treats
two more elaborate cases: first a “grid-tree” model consisting of a square grid



with a tree attached to each side, and second some heuristics for an “increasing
density of vertices” type of continuum limit. There is also discussion of the real
world distribution over v of BC(v) for urban street networks.

Chapter 6 talks briefly about (e) first-passage percolation [3], that is study

of the shortest geometric-length-route between distance vertices. This has been
extensively studied as theorem-proof mathematics in the model of random edge-
lengths on the square (and other) lattices. For more general models in the
continuous plane, such as the proximity networks described later, there is the
fascinating longstanding KPZ conjecture [7] that x = 2¢ — 1 for the scaling
exponents y and & defined by: for shortest routes between vertices at Euclidean
distance d
variance of route length = d?X
maximum deviation of route from linear =< d.
Such universality results are a central goal of theoretical statistical physics, and
represent extremely challenging open problems for rigorous proofs. On the other
hand, for real-world networks a much more prominent issue is the actual route
length — how does this compare to Euclidean distance?

Chapter 7 considers the notion of the simplest route, defined here as mini-
mizing the number of turns required, where turn is rather arbitrarily defined as
a turn of more than 30 degrees at an intersection. (Some automobile navigation
systems offer this as an alternative to the fastest route). One can then define
the “simplicity profile” S(d) > 1 of a road network to be the average ratio sim-
plest /shortest lengths as a function of Euclidean distance d. This profile and
its maximum S* = max, S(d) is intended as a rough indication of some form
of “complexity” of the network. One can compare the profiles for real networks
(roads or railways) and simple models of those and biological vein networks.
A tentative conclusion is that there is a systematic difference between com-
munication and distribution networks. Section 7.2 describes another intriguing
(though not so convincing to me) topic, complexity in human perception. This
is illustrated by considering a route through a subway network that needs to
be memorized, thereby bringing “entropy of information” into play in the route
description.

For general networks, a major subject in both theory and applications has
been community detection, that is finding regions where most vertices and most
of their neighbors have a given attribute. In a spatial network, possession of an
attribute will often be somewhat correlated with spatial position. So one might
modify general algorithms to incorporate spatial knowledge, or ask whether
ignoring spatial knowledge may lead to erroneous results. This is discussed in
Chapter 8 via examples and a simple spatial analog of the widely-used “planted
bisection” benchmark model for comparing algorithms on general networks.

Chapter 9 considers urban street networks, which partition the city into
blocks (cells, in geometry). Each block has some area and can be assigned some
measure of shape (e.g. area/diameter?) and so a scatter diagram of shape versus
area provides information about the local structure of the network, enabling



comparison of different cities. Also, an exact bijection between planar graphs
and trees is described: this is one point of contact with the “non-spatial” theory
of random mappings mentioned earlier, the development of that theory being
heavily based on such bijections.

Chapter 10 describes data on the growth of real road networks in two loca-
tions (Paris; and a 125 km? region north of Milan) over the last several cen-
turies. As one would expect from elementary scaling arguments, the number
of intersections (vertices) increased linearly with population increase, and the
total length of the network increased as population'/2. Studying the network
statistics introduced in previous chapters, one can see differences between the
“organic” growth in the Milan region and the extensive planned renovation of
Paris by Haussmann in the mid-1800s.

Part 2 of the book focusses on probability models of networks and their
analysis. The statistical physics phrase in the title might be discouraging for
readers who have never taken such a course, but here it is more a viewpoint,
emphasizing scaling arguments, power law behavior and “universality”, meaning
behavior that is similar for a range of models rather than dependent on the
details of a particular model.

Chapters 11 and 12 give brief discussions of spatial variants of the much-
studied Erdos-Rényi and “small worlds” networks. In particular there is an out-
line of the following celebrated result of Kleinberg. Start with the 2-dimensional
grid. Add extra edges at random, with the probability of an edge of length d
scaling as d—¢ for real a > 0. Then for the “critical value” o = 2, but no other
value, one can navigate through the network to a given destination at Euclidean
distance D using a small number of steps, in fact O(log2 D) steps rather than
DF for B(a) > 0.

A large literature on non-spatial networks studies variants of a basic prefer-
ential attachment model for growing random networks one vertex at a time. In
the basic model, a new vertex v* is linked to a fixed number of existing vertices
v with relative probabilities depending on the degree of v (increasing linearly,
in the simplest case). Chapter 13 describes natural spatial analogs, in which
attachment probabilities depend on both the degree of v and the distance of v
from the new vertex v*. Properties of statistics for route lengths and degree
distributions are derived heuristically. In a more elaborate model, envisaging
roads in a city with non-uniform population density, the attachment probabil-
ities can depend also on the local density and the level of traffic through the
existing vertex.

Chapters 14-16 give brief accounts of some models that have been well-
studied in the theorem-proof literature. Chapter 14 considers the random
Voronoi tessellation, constructed over the Poisson point process in the plane.
This was studied in (f) classical stochastic geometry [8] as a tractable way of
randomly partitioning the plane into cells. Also mentioned are dynamical pro-
cesses by which cells are split by random lines. Chapter 15 continues with
another model which has been well-studied more recently, the (g) random ge-



ometric graph [15] in which edges are placed between each pair of vertices at
distance less than some assigned threshold value. Chapter 16 describes what
are usually called (h) prozimity graphs [6], defined by putting an edge between
two vertices if some specified region based on those points is empty of vertices.
This slightly counter-intuitive definition implies that a vertex gets linked to a
few nearby vertices in such a way that the network is always connected.

Many of the world’s largest cities have extensive subway networks, which (for
intuitively rather obvious reasons) typically have a characteristic shape, consist-
ing of a well-connected central core with branches radiating outwards. Chapter
17 considers a very simple model consisting of a “star” of lines radiating out
from a center, intersecting with one circular “ring” line. Adding extra structure
to this model — a non-uniform density of users, and costs from congestion effects
one can do calculations of betweenness centrality and traffic flows. For instance
one sees a trade-off (as parameters vary) regarding whether routes go via the
center or via the ring.

Chapters 18 and 19 deal with optimal networks. Chapter 18 briefly reviews
two areas of well-studied theory. The minimum spanning tree is the shortest
network connecting given points. Some of its quantitative behavior is described
for two probability models: (i) the randomly edge-weighted complete graph [2],
and the Poisson point process on the plane. More relevant to spatial networks is
the concept of a (j) t-spanner [13], a network in which the route length between
any two vertices is at most ¢ times the Euclidean distance. Chapter 19 takes
a more detailed look at the case of subway networks. One general problem
formulation is to assume a Gaussian population density and seek the network
of given total length that is “optimal” according to some specific criterion. Of
course one hopes that the optimal network in such a model will show the “core
and branches” structure observed in real-world subway networks. This turns out
to be a surprisingly challenging problem that has not been successfully answered,
because it would require consideration of all possible topologies. Chapter 19
gives extensive calculations for specific topologies.

Chapter 20 returns to models for growing random networks one vertex at a
time. Here one considers a local optimization (benefit minus cost) rule to decide
how to link a new vertex to the existing network. The “cost” is proportional
to the length added. The “benefit” is assessed using a conventional “gravity
model” of traffic, that the level of traffic between vertices at distance d scales
as d~®. Analysis of such models is extremely difficult, and here is restricted to
tree-like networks.

Commentary: This book succeeds admirably in its stated “complete intro-
duction” goal, covering briefly a huge range of questions and models that have
been studied, with numerous references to the original papers which may be
consulted for more extensive analysis. Of course I have been unable to mention
all the topics in this review. The focus on road networks as examples reflects
the author’s own research, reasonably enough, though more data from other



examples might have helped readers appreciate the scope of the field.

To readers from theorem-proof mathematics, the parts not related to existing
theory may be most intriguing, to see the different approach. One often starts
with some elementary scaling argument, illustrated by the following well-known
example (section 14.2). You want to decide where to site a chain of retail stores,
keeping in mind that population density A(z) varies greatly across positions z,
and seeking to minimize the mean distance from a customer to the closest store.
The answer is to make the store density be proportional to A2/3 (2). As another
example, to design a new high speed railway network to link the N largest cities
in a country of area A, the total length must generically scale as v NA. A
longer network (larger ¢ in the length ¢v/ N A) will be more efficient in providing
shorter routes, but there is an obvious “law of diminishing returns” — how much
extra are we willing to spend in order to reduce average route length from 1.3 to
1.2 times Euclidean distance? From a Poisson model and the type of networks
described in section 4.2.5, one can numerically obtain ¢ &~ 2 as a good trade-off.

To my own taste, it is the study of optimal networks that offers the greatest
challenge for rigorous theory. The example above, and the “subway”example
from Chapter 19, illustrate a general difficulty faced in rigorous theory. Orders
of magnitude are usually rather obvious, while actual numbers — the constants
c in first order asymptotics — seem beyond the reach of theory and rely on
numerical estimates from simulations. Indeed a key constant in the entire field
of probability on the plane — the critical parameter in continuum percolation —
seems beyond reach. Sophisticated statistical physics has studied universality of
scaling exponents at critical values of systems, but (notwithstanding the KPZ
conjecture from Chapter 6) it is not clear if there are any analogs for spatial
networks that relate to natural real-world questions.

On the applied side, it seems to me that the main conceptual issue in devising
models that might illuminate the structure of real-world spatial networks (which
reflect human activity) is the extreme variation of population density; how does
one choose a function p(z) to model population density throughout a generic
country?

The models considered in the book have simple descriptions, and one can
readily think of variant models in an attempt to be more realistic. Simulation
studies of such models offer opportunities for undergraduate research, and I
have done a number of such projects with undergraduates.

From the viewpoint of technically sophisticated theory, one challenge already
mentioned is to make rigorous the KPZ conjecture. Here is a different idea, not
mentioned in this book. Random spanning trees on the 2-dimensional lattice
have been studied, with the goal of establishing a scaling limit as a random
spanning tree linking almost all points in the continuum plane [11]. This ap-
proach to defining continuum networks has apparently not been studied, but
one can try an alternate approach, as follows. Instead of edges, take routes
as primitives. So a realization of the random network is a collection of routes,
with a route specified between each pair of points, satisfying natural consistency



conditions. In particular, this approach allows one to construct networks which
are exactly (Euclidean) scale-invariant, a property that is only possible in the
continuum. Constructions and analysis of this class of models remains an open
research topic [1]. It is intriguing that scale-invariance implies there are should
be straight edges of all length scales, echoing a comment from this book’s sec-
tion on simple routes: almost always beneficial to take long straight lines when
they exist (section 7.1.2).
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