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Evolutionary game theory can be extended to include spatial dimensions. The individual players
are placed in a two-dimensional spatial array. In each round every individual “plays the game”
with its immediate neighbours. After this, each site is occupied by its original owner or by
one of the neighbours, depending on who scored the hlghest payoff. These rules specify a
deterministic cellular automaton.

We find that spatial effects can change the outcome of frequency dependent selection.
Strategies may coexist that would not coexist in homogeneous populations. Spatial games have
interesting mathematical properties. There are static or chaotically changing patterns. For

symmetrical starting conditions we find “dynamical fractals” and “evolutionary kaleidoscopes.”

There is a new world to be explored.

1. Introduction

Cooperation is essential for evolution. Molecules
cooperate to form a cell, cells cooperate to form
plants or animals. Animals cooperate in families
to raise their young or in foraging groups to prey
or to reduce the risk of predation. Altruistic acts
are commonly observed in the animal world. Even
scientists sometimes cooperate.

Cooperation may be difficult to achieve in a
classic Darwinian framework. Cooperators have to
succeed in the struggle for survival with defectors,
who by definition have a certain fitness advantage.
Three main theories have been put forward to ex-
plain the evolution of cooperation:

(i) Cooperation may be a promising option among
relatives. Here an altruistic act may pay off be-
cause it favours the survival of one’s own genes.
This is Hamilton’s [1964] kin selection theory.

(ii) Cooperation between nonrelatives can be ex-
plained by reciprocal altruism [Trivers, 1971;
Axelrod & Hamilton, 1981]. This works if two
individuals are likely to meet more than once
and if there is some chance that a cooperative
move may be reciprocated in the next round.
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The famous metaphor for this reciprocal al-
truism is the Prisoner’s Dilemma [Axelrod &
Hamilton, 1981; Axelrod, 1984; Wailkinson,
1984; Lombardo, 1985; Molander, 1985; May,
1987; Milinski, 1987; Axelrod & Dion, 1988;
Nowak & Sigmund, 1992].

Cooperation may also evolve if selection works
on the level of groups rather than individuals
[Williams, 1966; Wilson, 1980]. Thus groups
with more cooperators are more likely to sur-
vive. This explanation requires a mechanism
to assure that whole groups are indeed the unit
of selection and that individuals cannot easily
jump between groups. This kind of explana-
tion usually requires that populations are ge-
netically structured in particular ways and
that such structuring of sub-populations is
maintained.

(ii)

There are often no clear border lines among
these three mechanisms. They are approaches to
the same phenomena. If individuals live in groups
then it is likely that relatedness within a group is
larger than between groups. In the same way re-
ciprocal altruism may occur more often between
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individuals living in the same group and/or related
individuals.

In this paper we explore to what extent spa-
tial effects may, by themselves, be sufficient for
the evolution of cooperation. We develop a new
mathematical framework to study evolutionary
game theory in a spatial context [Nowak & May,
1992].

Classical evolutionary game theory [Maynard
Smith, 1982; 1989] does not include the effect of
spatial structures of populations. Different individ-
uals (strategies) interact with each other in propor-
tion to their relative frequency in the population.
The payoff of the game is then related to the repro-
ductive success. The resulting dynamics is typically
described by the time continuous game dynamical
equation [Taylor & Jonker, 1979).
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Here z; is the frequency of strategy ¢ and A;; is
the payoff to strategy 7 in the game with strategy j.
There are n different strategies. An extensive math-
ematical treatment of this and similar equations is
given by Hofbauer & Sigmund [1988].

In this paper we develop the idea, first sug-
gested by Axelrod [1984], of placing the individ-
ual “players” in a two-dimensional spatial array. In
each round every individual “plays the game” with
its immediate neighbours. After this, each site is
occupied either by its original owner or by one of
the neighbours, depending on who scores the high-
est total payoff in that round. This theory serves
as a deterministic framework of an aspect that has
been largely neglected in models of evolutionary bi-
ology: the direct effect of spatial structures upon
population organisation and frequency dependent
selection (i.e., “spatial evolutionary game theory”).

One of the simplest and yet most interesting
games of evolution is the Prisoner’s Dilemma (PD).
The simple PD is a game with two players, each
having two options: C (to cooperate) and D (to
defect). If both players cooperate, both obtain R
points; if both defect, both receive P points each;
if one player defects and the other cooperates, the
defector gets the highest payoff, T and the cooper-
ator the lowest payoff S. We have T > R > P > 8.
It is obvious that strategy D is dominant, in the
sense that it is best, no matter what the other player

does. In the absence of any spatial structure the de-
fectors will necessarily be favoured by selection and
out-compete the cooperators. (Usually it is also as-
sumed that 2R > T + S, otherwise an agreement
to alternate C or D, out of phase, beats cooper-
ation, thus clouding the analysis. But this is not
essential.)

Most of the recent work on the PD has dealt :
with the interactions between various strategies
(such as tit-for-tat) when players who recognise
each other meet repeatedly (see Axelrod & Dion
[1988]) or with ensembles of strategies and the
effects of occasional errors (Nowak & Sigmund,
1989, 1990, 1992; Nowak, 1990). In contrast to
Axelrod (who considered “all D” versus “tit for
tat,” and other interactions among strategies played
by players with memories of past encounters), our
approach to games in spatial arrays neglects all
strategical complexities or memories of past en-
counters and considers only two simple kinds of
individuals: those who cooperate and those who
defect. We will show that these cooperators and
defectors can coexist either in static irregular pat-
terns or in dynamic patterns with chaotic fluctua-
tions around predictable long-term averages.

The PD is not the only evolutionary game that
can be played with spatially structured interactions.
Other game theoretical metaphors display equally
interesting dynamics. In the Hawk-Dove game
[Maynard Smith, 1982] the payoff for a hawk inter-
acting with another hawk is less than the payoff for
a dove interacting with a hawk; and similarly a dove
gets less from another dove than a hawk gets from
a dove. This gives rise to an equilibrium between
both strategies even in the absence of spatial effects.
We will show that the spatial version of the Hawk-
Dove game generates intricate and mathematically
interesting patterns.

We find in general that spatial chaos and
dynamic fractals are typical features of spatial evo-
lutionary game theory (i.e., evolutionary games
played with neighbours on spatial lattices). For
symmetric initial conditions we find “evolutionary
kaleidoscopes.”

Our “spatial games” are cellular automata.
These are originally due to John von Neumann
[1966] and have recently received a lot of inte-
rest [Wolfram, 1984; Langton, 1986; Toffoli &
Margulos, 1987; Chua & Yang, 1988]. One of the
most fascinating cellular automata is Conway's
“Game of Life” (see Berlekamp, Conway & Guy
[1982], Poundstone [1985]).



2. The Rules of Spatial Games

Let us imagine that populations are not completely
homogeneous but have certain spatial structures.
Let us imagine that animals or molecules are lo-
cated at certain positions (territories, patches, pix-
els or cells) and are more likely to interact with their
neighbours (= individuals at a closer distance).
Therefore the probability that a certain phenotype,
A, interacts with another phenotype, B, is no longer
just the product of their relative frequencies in the
population, but depends in a nontrivial way on the
spatial structure of the population.

Let us consider two different strategies C' (for
cooperation) and D (for defection). Their inter-
action is described by the following payoff matrix
(which is a simplification of the more general PD
matrix defined earlier):

C D
C 1 0
D b 0

If two cooperators interact both receive 1 point. If
a defector “exploits” a cooperator, the defector re-
ceives the payoff b and the cooperator 0. The inter-
action between two defectors also leads to the zero
payoff. This game is designed to keep things as sim-
ple as possible. In fact there is only one parameter,
b, the advantage for defectors.

This game is now played on a two-dimensional
square lattice. Each position is occupied either by
a cooperator or a defector. In each generation the
payoff of a certain individual is the sum over all in-
teractions with the 8 nearest neighbours (the cells
corresponding to the chess king’s move) and with
its own site. It seems reasonable to include this
self-interaction, if one assumes that several animals
(a family) or molecules may occupy a single patch.
But the general properties of the game do not de-
pend on this assumption, and we will also explore
the situation without self-interaction.

Let us consider two examples. A cooperator
surrounded by 8 cooperators receives the payoff 9,
a defector surrounded by 8 cooperators receives the
payoff 8b.

In the next generation, an individual cell is oc-
cupied with the strategy that received the highest
payoff among all the 8 immediate neighbours of the
cell and, of course, the cell itself. Thus whatever
happens to a cell depends on the state of the cell,
the 8 neighbours and their neighbours. These are
altogether 25 different cells. In the terminology of
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the cellular automata literature, our simple game
is characterised by a transition matrix with 22° dif-
ferent rules. That is, in cellular automata terms,
the rules are very complex; our underlying biologi-
cal “game,” however, enables the rules to be stated
very simply.

The rules of our game are now completely de-
fined. The game is deterministic. The outcome
depends on the initial configuration and the magni-
tude of the parameter b.

Figure 1 shows the time evolution of the fre-
quency of cooperators, z, starting with the same
random initial condition, but for different values of
the parameter b. This simulation is performed on a
20 x 20 square lattice with periodic boundary condi-
tions. This toroidal world is chosen to get rid of any
boundary effects. Later we will also consider situ-
ations with fixed boundary conditions. The initial
configuration is obtained at random by assigning
a cooperator to an individual cell with probability
0.9. Thus in the beginning we have zo = 0.9. The
behavior is quite similar for b = 1.13, 1.15, 1.17
and 1.21. Initially the frequency of cooperators de-
creases to about z = 0.6, then the system oscillates
with period 2 at around z =~ 0.9. For b = 1.26 we
obtain an equilibrium without oscillations; b = 1.30
and b = 1.35 both settle to a period 2 oscillator after
about 20 to 25 generations; b = 1.45 goes to a period
3 oscillator; b = 1.55 needs some 120 generations to
settle finally to a period 24 oscillator; b = 1.65 also
oscillates with period 24; b = 1.79 goes to a 6 gen-
eration oscillator with very low amplitude; b = 1.85
looks completely irregular and chaotic (with a time
average of around Z =~ 0.31).

Is it possible to understand this behaviour?

2.1. The different parameter regions

The dynamical behaviour of the system depends on
the magnitude of the parameter b. The discrete na-
ture of the possible payoff totals means that there
are only discrete transition points for b that influ-
ence the dynamics. For 1 < b < 3 these transitions
occur at 9/8, 8/7,7/6,6/5,5/4,9/7, 8/6, 7/5, 6/4,
8/5,5/3,7/4,9/5, 2,9/4, 7/3, 5/2, 8/3.

2.1.1. The growth of D structures

At first we study the fate of a single isolated de-
fector surrounded by cooperators. If b < 1 such a
defector will vanish. If 1 < b < 9/8 the defector
will neither grow nor disappear. If 9/8 < b < 7/5
the defector will grow to form a 3 x 3 cluster of
defectors, which will return to a single defector in
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Fig. 1. The frequency of cooperators in a spatial Prisoner’s Dilemma (PD) over 200 generations for different values of b, the
advantage for defectors. Each simulation is performed on a 20 x 20 square lattice with periodic boundary conditions. (The
sides of the square fold over to form a torus.) All the simulations start with the same random initial configuration (with the
initial frequency of cooperators £ = 0.9). For b = 1.13, 1.15, 1.17, 1.21, 1.30, 1.35 the system settles to a period 2 oscillator;
b = 1.26 leads to an equilibrium without oscillations; for & = 1.45 we find a period 3 oscillator; b = 1.55 and 1.65 converge to
different period 24 oscillators; b = 1.79 oscillates with period 6 and b = 1.85 looks completely chaotic. For b = 2.01 we find an
equilibrium at a very low concentration of cooperators.




the next generation. This is a basic 1D — 9D —
1D oscillator with period 2. If 7/5 < b < 8/5 the
simplest period 3 oscillator is formed: 1D spreads
to 9D which is eaten up at the corners to form a 5D
cross which cycles back to 1D. If8/5 < b < 9/5 the
single defector grows to 9D, which remains stable.
If 9/5 < b then the 9D square can grow.

If b > 9/7 a cluster of 2 defectors can grow. If
b > 3/2 an infinite line of defectors surrounded by
cooperators can grow to give a line of thickness 3.
In fact if 3/2 < b < 2 then such a line oscillates
between thickness 1 and 3. If b > 9/5 then a clus-
ter of 4 defectors in a square can grow. This is an
important bifurcation point, because for b > 9/5
arbitrary large square clusters can grow at the cor-
ners. If b > 3 then a straight or diagonal border
line between a C and a D area moves in favour of
D; in this case the defectors will out-compete all
the cooperators.

2.1.2. The growth of C structures

If b < 1 then single cooperators surrounded by
defectors can grow. In this parameter region, the
cooperators will always out-compete the defectors.
(This nonparadoxical region is, of course, not inter-
esting.) If b > 1 then cooperators can only survive
(and grow) if they form clusters. If b < 2 then
all square shaped clusters (with a minimum of 4C)
can grow. A straight and a diagonal border line
between a C and a D area moves in favour of C.
If 2 <b<3, a2 x2 C-cluster will disappear, but a
3 x 3 C-cluster (or any larger square) will persist —
without gaining or loosing. If b > 3 all cooperators
will disappear.

If 7/5 < b < 2 there exists a glider [Fig. 2(a)].
This is a structure of 11 cooperators that move
either horizontally or vertically, one step in each
generation. The tail is rotating. If 5/4 < b < 2
another interesting C' cluster can be found: a rota-
tor [Fig. 2(b)]. This contains 6 cooperators. The
whole structure rotates 90 degrees per generation
either to the right or to the left. Both glider and
rotator evolve frequently out of random initial con-
ditions. They often disappear, if they collide with
other growing C structures. There are several types
of glider collisions: two gliders can collide to form a
growing C-cluster, or one glider can absorb another
one. The existence of gliders points into the direc-
tion of Conway’s “Game of Life” (see Poundstone
[1985]), but our “speed of light” is 4 times faster
than Conway’s.
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Of particular interest is another cluster of 10
cooperators: a “grower.” Figure 2(c) shows the first
4 generations. The grower exists for 1.756 < b < 2.
It gives rise to amazing structures of cooperators
invading a world of defectors. It will be discussed
in more detail later.

The above analysis suggests the existence of
three classes of parameter regions.

(i) If b < 1.8 then only C clusters can keep
growing.
(ii) If b > 2 then only D clusters can keep growing.
(iii) If 1.8 < b < 2 then both C and D clusters can
keep growing.

Figure 3 shows typical configurations for differ-
ent values of the parameter b. All simulations are
performed on a 200 x 200 square lattice with fixed
boundaries (i.e., cells along the edges have only
5 neighbours and cells in the corners only 3). All
simulations start with random initial configura-
tions (zo = 0.9) and the figure shows each simula-
tion after 100 generations. The colour code is
as follows:

blue: a C that was a C in the previous generation
green: a C that was a D in the previous generation
red: a D that was a D in the previous generation

yellow: a D that was a C in the previous generation

The amount of green and yellow indicates how
many cells are changing from one generation to the
next. A purely red and blue pattern is static.

For b = 1.15 almost all cells are occupied by co-
operators. Defectors occur either in single isolated
cells, which oscillate between 1D and 9D, or in sta-
ble unconnected short lines. For b = 1.35 the lines
of defectors become connected. The basic oscilla-
tors are again single defectors, but the end of lines
can oscillate, too. These oscillators are generally
of period 2. For b = 1.55 there are long connected
lines and whole lines can oscillate (usually with pe-
riod 2). Single defectors now oscillate with period
3 (the 1D — 9D — 5D — 1D-oscillator). The
interaction between large structures can lead to os-
cillators with very high period. Things are different
for b = 1.79. Here the pattern is almost completely
static. An irregular network of defectors runs over
the whole area. For b = 1.85 the structure appears
to be completely chaotic. There are about 31% co-
operators. A large fraction of cells is changing from
one generation to the next. The world is covered
with defectors, but cooperators exist in many small
clusters. These clusters have the tendency to grow.
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Fig. 2. (a) The “glider” is a structure that consists of 11 cooperators that moves in a world of defectors. The speed of the
glider is one step per generation (4 times faster than Conway’s glider in his Life). The tail is rotating. Glider collisions can
lead to amusing outcomes (like in real ‘Life’). The glider exists for 1.4 < b < 2. (b) A ‘rotator’ is a structure of 6 cooperators
entirely surrounded by defectors. It rotates 90 degree per generation (either to the left or to the right). A rotator exists for
1.25 < b < 2. Both gliders and rotators are frequently formed out of random initial configurations. (c) A ‘grower’ is a cluster
of 10 cooperators. Its fate is shown in Fig. 7. Here b = 1.79. Colour code: cooperators black, defectors white.



But whenever two such clusters come too close, the
defectors between them get high payoffs and start
to grow. The cooperators win along straight lines,
the defectors win along irregular boundaries. The
result i1s a dynamic equilibrium. It is an always
changing, but dynamically stable dimorphism. For
b = 2.01 another static pattern is observed.
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2.1.3. The frequency of cooperators

For very low initial frequencies of defectors, it is
straightforward to calculate the approximate equi-
librium frequencies (as long as b < 1.8). This can
be done by assuming that most of the defectors will
ocecur in single isolated cells. In this case we know

{a) b= 1.13

Fig. 3. The spatial Prisoner’s Dilemma can generate a large variety of qualitatively different patterns, depending on the
magnitude of the parameter, b, which represents the advantage for defectors. This figure shows some examples. All simulations
are performed on a 200 % 200 square lattice with fixed boundary conditions. All simulations start with the same random initial
configuration with 10% defectors (and 90% cooperators). The figure shows the asymptotic pattern after 100 generations.
The colour-coding is as follows: blue represents a cooperator (C') that was already a C in the preceding generation: red is a
defector (D) following 2 D; yellow a D following a2 (; and green a C following a ). The amount of green and yellow indicates
how many cells are changing from one generation to the next, A pnrely red and blue pattern is static. (a) For b = 1.13
there are isolated points of defectors, which oscillate with peried 2 (the 1D — 9D — 1D oscillator). There are also isolated
lines of defectors, which do not oscillate. Most of the cells are cooperators. (b) The lines of defectors are more connected
for b = 1.35. The end of lines oscillate with period 2. (¢) For & = 1.55 lines of defectors are connected and oscillate. There
are large connected structures of defectors, which form high period oscillators. (d) An irregular, but static pattern emerges
if 1.75 < & < 1.8. The equilibrium frequency of C depends on the initial conditions, but is usually between 0.7 and 0.95,
(e) Spatial chaos characterises the region 1.8 < b < 2. The large proportion of vellow and green indicates many changes
from one generation to the next. Both C-clusters can invade D-regions and vice versa. This leads to an always chauging,
dynamically stable coexistence between C and D). The frequency of € is (almost) completely independent of the initial
conditions and is around 0.32. (f) Another static pattern is generated for & = 2.01. Here most of the cells are occupied
with defectors. Cooperators form stable clusters. Conditions: 200 x 200 square lattice, fixed boundaries, 8 neighbours plus
self-interaction, random initial configurations, initial frequency of cooperators zy = 0.9
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{¢) b= 155

Fig. 3. (Continued )
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(e) lLB<hb<2

Fig. 3. (Continued )
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(f) b= 2.01

Fig. 3.

exactly the fate of each individual D. Let yy denote
the initial frequency of defectors, and % the equilib-
rium frequency (or time average) of defectors. For
b < 1 we have § = 0. The following results hold for
very small values of y. For 1 < b < 9/8 we have
7=y If9/8 < b < 7/5 we have § = 5yo. This is
the time average of the 1D — 9D — 1D oscillator.
If 7/5 < b < 8/5 we find again that § = 5yp. This is
the time average of the 1D — 9D — 530D — 1D os-
cillator. If 8/5 < b < 9/5 we have § = 9yg, because
all single defectors turn into stable 3 x 3 squares.
If 9/5 < b a single defector gives rise to growing
structures, and the calculation of the equilibrium
frequency of cooperators becomes nontrivial (and
will be discussed in Sec. 4).

We do not attempt to calculate the equilibrium
frequencies of cooperators in the simulations that
start with a larger fractions of defectors. For a ran-
dom initial configuration the defectors are always at
an advantage, because they find themselves in the
neighbourhood of many cooperators. Many cooper-
ators disappear in the first two generations. Con-
nected structures of defectors arise and the situation

(Continued )

becomes difficult. Random fluctuations may leave
us with a few C-clusters that cannot grow, like
gliders or rotators or with a simple C-square that
grows to win the whole world. For 1 < & < 1.8
most initial conditions lead to cooperator frequen-
cles somewhere between 0.7 and 0.95. For 1.8 <«
b < 2 most initial conditions lead to cooperator
frequencies around 0.3,

3. The Invasion of Defectors: An
Evolutionary Kaleidoscope

An interesting sequence of patterns emerges if a sin-
gle defector invades a world of cooperators in the
parameter region 1.8 < & < 2. In generation t = ()
we start with one defector. This defector first grows
to form a 3 x 3 and then a 5 x 5 square of defectors.
The payoff for the defectors at the 4 corners of this
square is 3b {which is larger than 9). The payoffs
for the defectors along the edges of the square is
3b (which is smaller than 6), Therefore the defec-
tors gain at the corners but lose along the lines. The
result is an interesting and beautiful growth
pattern. We can study these patterns in a finite
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Fig. 4. Spatial games can generate “kaleidoscopes.” These are long (but finite} sequences of different patterns (on a finite
array). The initial symmetry is always maintained, because the transition rules of our games are symmetric. The frequency
of individual strategies in subsequent generations oscillates in a chaotic way. The final state of such a kaleidoscope iz also
quite “unpredictable” {see Table 1). This picture shows generations { = 0 — 179, starting with a single defector invading a
49 » 49 array of cooperators. There are fixed boundary conditions and 4 = 1.85. The colour code is the same as in Fig. 3 (and
throughout the paper). These “evolntionary kaleidoscopes” combine chaos (unpredictability) and symmetry.
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world (with fixed or cyclic boundary conditions) or
in an — effectively — infinite world.

Figure 4 shows the “evolutionary kaleidoscope”
that is generated by a single defector invading a
finite array of 49 x 49 cooperators with fixed bound-
aries. Each generation shows a new picture. There
is an amazing variety. The initial symmetry is never
broken, because the rules are symmetrical. The fre-
quency of cooperators oscillates chaotically. These
oscillations cannot continue forever. What is the
eventual fate of such a kaleidoscope? The total
number of possible states is only finite (although
very large: for an nxn array we have approximately
2"* /8 different configurations). The kaleidoscope
must eventually converge to some oscillator with fi-
nite period (this can also be a fixed point). Smaller
kaleidoscopes eventually go to a state where all cells
are occupied with defectors. This “all-D” state is
an absorbing state, which means, once you are there
you will remain there. Table 1 shows the number
of generations required to go to an all-D state for
kaleidoscopes with different sizes. This sequence is
quite fun. Would you expect that a 49 x 49 kalei-
doscope takes 1140 generations to go to an all-D
state, but a 59 x 59 only 33 generations? And what
happens if a single defector invades a 57 x 57 world?
It never goes to an all-D state. Quite contrary, it
goes to almost an all-C state. After 4770 gener-
ations there is a single cross of 113 defectors left
over. This oscillates with period 2. All other cells
are cooperators. A 61 x 61 kaleidoscope takes 3900
generations to generate a pattern consisting of 48
cooperators in a world of defectors.

Another absorbing state is the all-C state. But
this state can never be reached by a kaleidoscope
that starts with a defector in the center, because
this defector can never be replaced by a coopera-
tor. This follows from symmetry arguments. If this
central defector is to be replaced by a cooperator,
then it must have cooperators in its neighbourhood.
It can either have 8 or 4 cooperators as immediate
neighbours. In the first case its payoff would be
8b, which is larger than anything a cooperator can
achieve. In the second case its payoff is only 4b, but
the cooperators can only get payoff 6, which is less.
Hence the defector in the center will persist indefi-
nitely. Thus the all-C state can never be reached.

The interesting mathematical features of these
kaleidoscopes arise from a combination of simplic-
ity (the rules), deterministic unpredictability (the
eventual fate), transient chaos (the frequency of

Table 1. What happens to kaleidoscopes in the long run?
Size (n x n) Goes to all-D after ¢t Generations

n= t=

1 0

3 1

5 2

7 3

9 4

11 5

13 8

15 8

17 8

19 9

21 28

23 19

25 18

27 17

29 49

31 16

33 16

35 17

37 76

39 47

41 97

43 111

45 180

47 143

49 1140 _

51 never (after ¢ =737, period 2)

53 331

55 752

57 never (after t = 4770, period 2)

59 33

61 never (after t = 3900, fixed point)

63 33

65 33

67 33

69 ? (no period for ¢ < 10000)

71-97 ? (not all-D for ¢ < 5000)
cooperators) and — for some special cases —

symmetry (beauty).

Of similar interest is the case when a single
defector invades an infinitely large array of cooper-
ators (Fig. 5). There are fractal like structures that
repeat themselves. The whole D-structure takes a
square shaped form always at the generations which
are the powers of 2. Fort =0, 1, 2, 4, 8 and 16
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Fig. 5. A dynamic fractal is generated if a single defector invades a world of cooperators. The figure shows the generations
t =0 —47 and ¢ = 64, 96, 128, 160, 192, 256. Conditions: square lattice, no boundarjes, 8 neighbours plus self-interaction,
parameter region 1.8 < b < 2.
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(d)
Fig. 5. (Continued )
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(e)

Fig. 3. {Continued )
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Table 2. Total number of defectors after t = 0, 1, 2,
4, ... generations, starting with a single defector invading an
infinite world of cooperators. These generations correspond
to the square-like structures of the dynamical fractal.

Time Number of Defectors
0

1 9

2 25

4 81

8 289

16 1089

32 4177

64 14665
128 50389
256 189917
512 722273
1024 2889833
2048 11556509

these squares only consist of defectors. For ¢t = 32
there are 8 clusters of cooperators left over, but they
disappear in the next generation. For higher gen-
erations the squares contain many clusters of coop-
erators, which can persist. Table 2 shows the total
number of defectors for the generations t = 0, 1,
2,4, 8,..., 2048. Figure 6(a) shows the fraction of
defectors in the growing structure for 2097 genera-

o
[

o
o

o©
A

o
[

o
N

Frequency of cooperators

°©

250 500 750 1000 1250 1500 1750 2000
Time (generations)

(a)
Fig. 6.

tions of growth without boundaries. (This was close
to the maximum memory capacity of our computer).
Note that the minima of the curve occur at powers
of 2 and correspond to the square-like structures.
The frequency of cooperators seems to converge to
z =~ 0.318 which seems to be the same value as in
the simulations with random initial conditions.

4. A Dynamic Fractal: The Magic
Agreement

The goal of this section is to find a model to de-
scribe the growth pattern that evolves from a
single defector invading an infinite array of cooper-
ators and to calculate the equilibrium frequency of
cooperators (within the growing structure) as time
goes to infinity.

We assume that at generation t = 2™ there
exists a square, which consists of (2"*! + 1)? de-
fectors. We neglect the fact that there are actually
many clusters of cooperators within this square for
t > 32. We assume that this square now grows
at the corners and shrinks in the middle. This re-
sults in the formation of 4 new small squares at the
corners and one large square in the center. We as-
sume that this simplified growth pattern continues,
i.e., the 4 squares at the corners get bigger and the
square in the center gets smaller (Fig. 7). We ne-
glect that the 4 squares actually only grow at the

n 0.6
S
[o]
o 0.5
[o8
(o]
[o]
004
5
>0.3]
c
]
o 0.2
[}
"

0.1

50 100 150 200 250 300
Time (generations)
(b)

(a) The frequency of cooperators in the (infinitely) growing dynamic fractal starting from a single defector (see Fig. 5).

For low generations, the minima occur at powers of 2 and correspond to the square-like structures of defectors. The broken
line represents z = 12 log 2 — 8 = 0.3178..., which seems to coincide with the limiting frequency of cooperators as { — oo.
Conditions: square lattice, no boundaries, 8 neighbours plus self-interaction, parameter region 1.8 < b < 2. (b) The frequency
of cooperators in a simulation starting with random initial configuration. It is surprising that the time average again coincides
with 12 log 2 — 8. Conditions: 400 x 400 square lattice, fixed boundaries, 8 neighbours plus self-interaction, random initial

conditions z = 0.6, parameter region 1.8 < b < 2.



A simple approximotion

Fig. 7. A simpler model for the dynamic fractal in Fig. 5.
At generation t = 27, there is a square of (2™ + 1)? defec-
tors. This square grows at the corners and shrinks along the
lines. If this process continues — with 1 row of batches per
generations in either direction — a new square is formed at
t = 2"+, This square contains (2”** + 1)? defectors. For
large values of n, the time average of cooperators inside the
structure over such a circle from one square to the next con-
verges to 12 log 2 — 8.

corners and loose along the side lines. Under these
assumptions the number of defectors at generation
t+1i, witht=2"and 0 <1i < t, is given by

Np=(2t+2i+1)2-8i(2t—2i—1). (1)

The fraction of cooperators within the square
(2t +2i +1)? at time ¢ 4 4 is given by

8i(2t — 2i — 1)

W)= s ®
For very large t, this is
N di(t—1)

This describes oscillations with increasing period.
The minima occur at t = 2" (i = 0) and the maxima
at ¢ = t/3. The time average of cooperators over
one cycle, as i goes from 0 to t, is given by

t

i(t —1) 1s(1-5s)
Z t+i2 /0(1+s)2ds

=0
=12 log 2 — 8 = 0.31776617..... (4)

This time average is in agreement with the numeri-
cal values of the original model. It seems to coincide
both with the time limit of the fraction of cooper-
ators in the symmetric growing patterns and with
the time average in the simulations starting from
asymmetric random initial conditions (Fig. 6).
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5. The Invasion of Cooperators:
Superstrings and More Fractals

Cooperators can also invade a world of defectors.
Starting from a 2 x 2 square of cooperators, we ob-
serve growing squares of cooperators that expand
to out-compete all defectors. This happens as long
as b < 2.

More interesting growth patterns occur, if we
start with irregularily shaped clusters of coopera-
tors. One such example is the grower [Fig. 2(c)].
For 1.75 < b < 1.8, this grower expands to generate
a peculiar geometric pattern. Eventually most cells
will be occupied with cooperators. Across one diag-
onal there is a pulsating “superstring” of defectors
left over. There are also static blocks of defectors
nicely aligned in rows and columns [Fig. 8(a)]. For
1.8 < b < 2, the grower also expands indefinitely,
but is eaten up in the middle by fractal like defec-
tor structures — reminiscent of those we find in the
symmetric kaleidoscopes [Fig. 8(b)].

6. Other Geometries: Towards a
Classification

This section is devoted to the exploration of the
properties of spatial games with different assump-
tions about the geometry determining which neigh-
bours are interacted with. In the previous sections
we have seen that a dynamic equilibrium between
cooperators and defectors occurs for parameter
values of b, where both C' and D clusters keep
growing. This criterion will hold for all the other
neighbourhoods we will consider.

6.1. Square lattices: 8 neighbours

First we consider a square lattice with interaction
with the 8 immediate neighbours, but without self-
interaction. This case is very similar to the original
one. We observe the same kind of dynamics, but
for slightly different values of b. If b < 5/3 then
only C clusters keep growing. If b > 8/5 then only
D clusters keep growing. The most interesting pa-
rameter region is 8/5 < b < 5/3. Here both C and
D clusters keep growing. This results in a dynamic
equilibrium between cooperators and defectors.
The dynamic fractal that is generated by a sin-
gle invading defector is similar to Fig. 4. Figure 9(a)
shows the fraction of defectors in the growing struc-
ture for 2097 generations. The frequency of co-
operators seems to converge to z =~ 0.30. This
value is again in agreement with the time average of
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b

Cooperators can also invade defectors and generate surprising patterns. Both simulations start with a
This is a cluster of 10 cooperators. Both pictures show the first 48 generations of the grower. {a) b = 1.79.

‘arower” (see
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Fig. 9. Time series of the cooperator frequency for a square
with 8 neighbours, but without self-interaction. The interest-
ing parameter region is 8/5 < b < 5/3. (a) The frequency of
cooperators within the dynamic fractal emerging from a sin-
gle defector. (b) The frequency of cooperators for a 400 x 400
square lattice, fixed boundaries, random initial conditions
(zo = 0.9). The straight line indicates 12 log 2 — 8.

simulations starting from random initial conditions
[Fig. 9(b)] and is slightly lower than 12 log 2 — 8.

Here the invasion of cooperators in a world of
defectors starting with a square of 3 x 3 cooperators
also gives rise to an interesting fractal-like growing
pattern.

6.2. Square lattices: 4 neighbours

Next we consider only the interaction with the 4
immediate neighbours — excluding the diagonal
neighbours. Again we can consider the two cases

with or without interaction with the own batch.
The dynamic equilibrium occurs for 4/3 < b < 1.5
(without self-interaction) and for 5/3 < b < 2 (with
self-interaction).

Figure 10 shows typical patterns starting from
random initial conditions. Another interesting pa-
rameter region occurs for 2 < b < 2.5 (if n = 5)
and for 1.5 < b < 2 (if n = 4). Here we find static
patterns formed by crosses of cooperators that can
only expand horizontally or vertically until they hit
each other or a stable 5C cross or a 3C blinker.

Figure 11 shows the growth patterns emerging
from a single defector. These patterns represent a
completely different culture with royalty, crowns,
crosses and lillies of France.

6.3. Hexagonal lattices: 6 neighbours

The situation is different for hexagonal lattices.
Here the parameter regions where C- and D-clusters
can grow do not overlap. Therefore, according to
our classification, there is no dynamic equilibrium.
A coexistence between cooperators and defectors
can only occur in more or less static patterns. If
there is no self-interaction, a generic D-cluster
grows at the corners if b > 2 and along the lines if
b > 3. The corner and line conditions for C-clusters
are obtained as b < 1.5 and b < 2, respectively.
Thus there is no overlap.

For hexagonal lattices a dynamic equilibrium
is possible if one makes the additional assumption
that individuals interact more often within their
own batch. This seems biological plausible if we as-
sume that several individuals occupy a single patch
and that interactions are more frequent between in-
dividuals at a closer distance. To be specific let us
assume that a cooperator receives a payoff k from
interactions within its own patch (let £ > 1) and
only payoff 1 from interactions with cooperators in
the neighbourhood. For a defector nothing changes.
Now we find that both C- and D-clusters grow (at
the corners) if 1.5+ k/2 > b > 2 + k/3. If this
inequality is fullfilled, we obtain a dynamic equilib-
rium (with chaotic fluctuations) for the hexagonal
lattice.

6.4. The radius of interaction in a
more general approach

It seems to be a natural expansion of the above
ideas to assume that for each individual there is a

-certain radius of interaction, . The payoff is then

evaluated over the area of the circle, 727. The pay-
off for a single defector surrounded by cooperators
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Fig. 10. Tvpical pictures of a square lattice with a 4 neighbours interaction. Conditions: 200 x 200 square lattice, fixed
boundaries, 4 neighbours plus self-interaction, random initial conditions ¥ = 0.9. (a) b = 1.31, {b) b = 1.61, (¢j & = 1.85,
(d) b=2.01.
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Fig. 10. (Continued )
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Fig. 10. (Continued )
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Fig. 10. (Continued )
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(a)

Fig. 11. Dynamic fractal for the 4 neighbour interaction. Generations § = ( — 95 are shown. Conditions: squarce lattice. no
boundaries, 4 neighbours plus self-interaction, starting with a single defector, parameter region 5/3 < b < 2.
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(b)
Fig. 11, (Continued )
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is given by br?m, and the payoff for a cooperator
surrounded by cooperators is given by r27. Without
loss of generality we can assume that the radius of
interaction, r, is the unit of length, i.e., r = 1.

Let us consider a circular cluster of cooperators
of radius R which is entirely surrounded by defec-
tors. The defectors just outside the boundary of the
circle receive the payoff ba(R)w. Here aR) is the
area of the intersection between the circle of coop-
erators and the payoff circle of the defectors. For
R > 1/2, this is

a(R) = R2(0 - % sin 20) +¢- % sin 2¢  (5)

with ¢ = arccos(1/2R) and 6§ = 7 — 2¢. This pay-
off has to be compared with the payoff given to
cooperators, whose payoffs come from the circle
lying entirely inside the cluster of cooperators.
This payoff is #. Thus the cluster of cooperators
will expand if

1
For 1/2 < R < 1, C-clusters will grow if
R2

For R < 1/2, C-clusters only grow if b < 1.

Next we consider a circular D-cluster of ra-
dius R > 1/2. The defectors on the boundary of
this cluster receive the payoff b(1 — a(R))r. This
must be compared with the payoff, 7, which is given
to cooperators, whose interaction area lies com-
pletely outside the D-cluster. Thus the D-cluster
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can grow if
1
b> ————.
> 1= a(R) ®
For R < 1/2, the circular D-cluster grows if
1
For large R we have
1 1 1 1
a(R)~7r—ﬂ_a.rccos 58~ % 3Re (10)

For R — oo we have, of course, a — 1/2.

This means: For b < 1, C-clusters grow to
infinity and D-clusters disappear. For 1 < b < 2,
C-clusters above a critical size grow to infinity; C-
clusters which are too small, on the other hand,
disappear. D-clusters grow or shrink to a certain
stable size. For 2 < b, D-clusters grow to infin-
ity. (For b = 2, both C- and D-clusters can grow
to infinity.) For 2 < b < 2.56, C-clusters above a
certain critical size grow or shrink to a given finite
size. The threshold 2.56 is 1/a(1). For 2.56 < b, all
C-clusters disappear. b = 2.56 represents the high-
est advantage for the defectors which is compatible
with cooperators still surviving in some clusters.

This represents some kind of continuous space
approximation.

7. Other Games: On Hawks ahd Doves
and ESS

Spatial games are not limited to the special payoft
matrix given in Sec. 2. Any game can “become spa-
tial” if played among neighbours in a spatial array.

Fig. 12. (following pages) Hawk-Dove games can also generate a large variety of different patterns. The figure shows the
first 96 generations of two kaleidoscopes starting with a single dove (D) invading a 99 x 99 world of hawks (H). The payoff

matrices are

(a)

H
D
(b)
H
H 100
D 121

31
50

20
10

D
200
131

The colour code is as follows: blue: a H that was a H in the previous generation; green: a H that was a D in the previous
generation; red: a D that was a D in the previous generation; yellow: a D that was a H in the previous generation.
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Let us consider two strategies, A and B, and the
payoff matrix :

A B
A a C
B b d

In classical evolutionary game theory [Maynard
Smith, 1982], a strategy, A, is said to be an evolu-
tionarily stable strategy (ESS) if there is no mutant
strategy, B, which can spread in a population that
consists entirely of individuals adopting strategy 4.
For the above payoff matrix, this means that A is
an ESS if

a>b

or
a=b and e¢>d.

We can also define the ESS conditions for spatial
games. There seem to be two different cases corre-
sponding to a strong and a weak spatial ESS. We
propose the following:

Definition. A strategy is a strong spatial ESS if
any mutant strategy that is occupying a single cell is
bound to disappear in the next generation. A strat-
egy is a weak spatial ESS if any mutant strategy
that is occupying a single cell is unable to spread.

For a geometry with N neighbours and self-
interaction, we have:

A is a strong ESS if Na +¢> Nb+d.

A is a weak ESS if (N +1)a > Nb+d > Na+c.

B can invade A if Nb +d > max{(N + 1)a,
Na+c}.

For N neighbours without self-interaction, we have:

A is a strong ESS if (N — 1)a + ¢ > Nb.
. Ais aweak ESSif Na> Nb> (N —-1)a+e.
B can invade A if Nb > max{Na, (N — 1)a + c}.

If we consider a square lattice with N = 8
neighbours and self-interaction, the growth pattern
of an individual B strategy will be fractal-like when-
ever the growing B cluster gains at the corners but
loses along the lines. This happens if

5b + 4d > max{9a, 6a + 3c} (Corner),
6a + 3¢ >max{9, 3b+ 6d} (Line).

In the Hawk-Dove game [Maynard Smith, 1982]
the payoff matrix is characterized by b > a and
¢ > d. Figures 12 show the large variety of pat-
terns that can be generated by Hawk—-Dove games

on a square lattice (with 8 neighbours and self-
interaction).

8. Conclusion: Spatial Cooperation,
T-Shirts, and Carpets

For many kinds of “evolutionary games,” we find
that the outcome of frequency dependent selection
can be changed (and reversed) if spatial effects
are taken into account. Classical evolutionary
game theory assumes randomly interacting popu-
lations. This is an abstraction. In real popula-
tions, individuals are more likely to interact with
their neighbours.

The term “population viscosity” was coined by
Hamilton [1964] in his fundamental paper on
inclusive fitness. A population is viscous if indi-
viduals do not move far from their places of birth.
This limited dispersal is thought to facilitate the
evolution of cooperation (altruism) by increasing
the degree of relatedness among interacting individ-
uals (Hamilton, 1971, Wilson et al., 1992). We show
here, however, that local interactions within a spa-
tial array can, by themselves, enable cooperative
behaviour to persist indefinitely.

It is interesting to note that our spatial games
can be thought of as showing elements of kin
selection, group selection and reciprocal altruism
(although it is, of course, not necessary to think
of them in this way). Thus one may think of neigh-
bouring individuals as being related by descent.
Interactions occur among neighbours and hence
among relatives. This suggests the interesting
possibility of analysing the degree of kinship
among neighbours and thence of using the concept
of inclusive fitness [Hamilton, 1964] as a way
of understanding some aspects of the dynamical
properties of spatial games. It is also possible to
evoke the formalism of reciprocal altruism: there
are repeated encounters among neighbouring cells
in successive rounds of the game. However, it is
important to keep in mind that, in our models,
individual cells do not have memory or elaborate
strategies (although a spatial structure may be seen
as a strategy with some kind of memory). One can
also think of assigning fitness values to clusters of
players of a certain strategy (cooperators). The suc-
cess of such groups will depend on their detailed
structure and their neighbourhood.

The need for cooperation is also a key feature
of Eigen & Schuster’s [1979] hypercycle theory.
The early, prebiotic, self-replicating molecules
are faced with an error threshold when they try to



accumulate more information in order to “encode”
for more complex structures and more accurate
replication devices. In the absence of an accurate,
error-correcting machinery, the length of polymer
molecules is quite limited and probably too small
to encode for such machinery. This problem can
be overcome if two, three or more different self-
replicating molecules interact (cooperate) with
each other in a cyclic way. Each member of such
a  “hypercycle” increases the replication rate
(the fitness) of the subsequent member. This cyclic
interaction seems to assure cooperation (and hence
the accumulation of more information). Maynard
Smith [1979)] raised a devastating objection: hyper-
cycles are vulnerable to defectors. Defectors are
self-replicating molecules that use the catalytic
support from their precursor molecule, but do not
support any other molecule. Then the hypercycle
obviously breaks down. In this sense a hypercycle
is not an evolutionarily stable structure (see also
Szathmary & Demeter [1987]).

Recently Boerlist & Hogeweg [1991a,b] have
performed computer simulations of hypercycles
including spatial dimensions. They have found
that larger hypercycles (with five or more members)
form rotating spirals. These spirals have remark-
able selection properties: they are able to eliminate
defectors (parasites). Spirals can move and collide.
Spirals can compete against each other. Selection
favours faster rotating spirals. This can even lead
to the selection of “altruistic” molecules with faster
decay rates. There is still a problem. This selec-
tion based on spatial self-structuring favours shorter
hypercycles over longer ones (because they rotate
faster). This is exactly the opposite of what is
required to accumulate information to overcome
the error-threshold. Boerlist & Hogeweg, however,
have shown that selection can work in a counter-
intuitive and surprising way if spatial structures are
considered. This last point is very much in the spirit
of our findings.

Hassel et al. [1991] have studied host-parasitoid
interactions with limited, diffusive dispersal. They
also find that local movement in a patchy environ-
ment can help otherwise-unstable host and para-
sitoid populations to persist together.

In short, we have shown that the simplest
deterministic models of frequency dependent selec-
tion (or evolutionary games) can lead to a rich va-
riety of spatial and temporal dynamics. Spatial
chaos, dynamic fractals and kaleidoscopes are ob-
served. The success of a given strategy depends on
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the spatial structure of the population. Thus selec-
tion works on spatial structures.

Mathematics has had an inclination for nice
structures since ancient times. The simplest mathe-
matical models can generate very complicated
dynamics whenever time (see May [1976]) or space
is considered to be discrete. One of the appealing
aesthetic elements in the present work is the com-
bination between temporal chaos (the unpredictable
oscillations of the frequencies of the individual
strategies) and highly symmetric fractals. The
kaleidoscopes of spatial evolutionary games have
many applications in the “real world”: there is
a new industry for tiles, carpets, T-shirts, rose
windows and lace doilies.

Acknowledgments

We thank Karl Sigmund, Bill Hamilton and
Philippe Binder for stimulating conversations, and
Brian Sumida for advice about computation.
We also thank Bill Hamilton for use of his
graphics workstation and colour printer. The dy-
namic fractals appeared for the first time on MAN’s
laptop PC, which was provided by the Austrian
“Wissenschaftsministerium.” This work was sup-
ported by grants from the Royal Society (RMM);
MAN is a Research Fellow of Wolfson College, Ox-
ford, and a Wellcome Trust Senior Research Fellow.

References

Axelrod, R. [1984] The Evolution of Cooperation,
Basic Books, New York (reprinted 1989 by Penguin,
Harmondsworth).

Axelrod, R. & Hamilton, W. D. [1981] “The evolution of
cooperation,” Science 211, 1390-1396.

Axelrod, R. & Dion, D. [1988] “The further evolution of
cooperation,” Science 242, 1385-1390.

Berlekamp, E., Conway, J. & Guy, R. [1982] Winning
Ways, vol. 2 (Academic Press, New York).

Boerlijst, M. & Hogeweg, P. [1991a] “Spiral wave struc-
ture in prebiotic evolution: Hypercycles stable against
parasites,” Physica D48, 17.

Boerlijst, M. & Hogeweg, P. [1991b] “Self-structuring
and selection,” Artificial Life II, SFI studies in the
sciences of complerity, vol. 10, eds. Langton C. G.
et al., (Addison-Wesley).

Chua, L. O. & Yang, L. [1988] “Cellular neural networks:
Theory,” IEEE Transactions on Circuits and Systems,
35, 1257-1272.

Eigen, M. & Schuster, P. [1979]
(Springer, New York).

Hamilton, W. D. [1964] “The genetical evolution of social
behaviour,” J. Theory Biol. 1-52.

The Hypercycle



78 M. A. Nowak & R. M. May

Hamilton, W. D. [1971] in “Man and beast: Compara-
tive social behaviour,” eds., Eisenberg, J. F. & Dillon,
W. S. (Smithsonian Press, Washington DC).

Hassel, M. P., Comins, H. & May, R. M. [1991] “Spatial
structure and chaos in insect population dynamics,”
Nature 353, 255-258.

Hofbauer, J. & Sigmund, K. [1988] The Theory of
Evolution and Dynamical Systems (Cambridge,
University Press).

Langton, C. G. [1986] “Studying artificial life with
cellular automata,” Physica D22, 120.

Lombardo, M. P. [1985] “Mutual restraints in Tree
Swallows,” Science 227, 1363-1365.

May, R. M. [1987] “More evolution of cooperation,”
Nature 327, 15-17.

May, R. M. [1976] “Simple mathematical models with
very complicated dynamics,” Nature 261, 459467.

Maynard Smith, J. [1979] Nature 280, 446.

Maynard Smith, J. [1982] Ewvolution and the Theory of
Games (Cambridge University Press).

Maynard Smith, J. [1989] Evolutionary Genetics (Oxford
University Press).

Milinski, M. [1987] “Tit for tat in sticklebacks and the
evolution of cooperation,” Nature 325, 435. '

Molander, P. [1985] “The optimal level of generosity in
a selfish, uncertain environment,” J. Conflict Resolut.
29, 611-618.

Nowak, M. & Sigmund, K. [1989] “Oscillations in the
evolution of reciprocity,” J. Theor. Biol. 137, 21-26.

Nowak, M. [1990] “Stochastic strategies in the prisoners
dilemma,” Theor. Pop. Biol. 38, 93-112.

Nowak, M. & Sigmund, K. [1990] “The evolution of

stochastic strategies in the prisoner’s dilemma,” Acta
Appl. Math. 20, 247-265.

Nowak, M. A. & May, R. M. [1992] “Evolutionary games
and spatial chaos,” Nature 359, 826-829.

Nowak, M. A. & Sigmund, K. [1992] “Tit for tat in
heterogeneous populations,” Nature 355, 250-253.
Poundstone, W. [1985] The Recursive Universe (Oxford

University Press).

Szathmary, E. & Demeter, L. [1987] “Group selection of
early replicators and the origin of life,” J. Theor. Biol.
128, 463-486.

Taylor, P. & Jonker, L. [1979] “Evolutionary stable
strategies and game dynamics,” Math. Biosci.
40, 145-156.

Toffoli, T. & Margolus, N. [1987] Cellular Automata
Machines (Cambridge MIT Press).

Trivers, R. L. [1971] “The evolution of reciprocal altru-
ism,” Quarterly Review of Biology 46, 35-57.

Von Neumann, J. [1966] Theory of Self-reproducing
Automata (University of Illinois Press).

Wilkinson, G. S. [1984] “Reciprocal food sharing in the
vampire bat,” Nature 308 181-184.

Williams, G. C. [1966] Adaptation and Natural Selection
(Princeton University Press).

Wilson, D. S. [1980] The Natural Selection of Populations
and Communities (Benjamin/Cummings).

Wilson, D. S., Pollock G. B. & Dugatkin, L. A. [1992]
“Can altruism evolve in purely viscous populations?”
Evolutionary Ecology, in press.

Wolfram, S. [1984] “Cellular automata as models of
complexity,” Nature 311, 419-424.

ey





