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COALESCING RANDOM WALKS AND VOTER MODEL 
CONSENSUS TIMES ON THE TORUS IN Z d 

BY J. T. Cox1 

Syracuse University 

Let qt be the basic voter model on Zd and let (N) be the voter model on 
A(N), the torus of side N in Zd. Unlike qt, Q(N) (for fixed N) gets trapped 
with probability 1 as t -3 oo at all O's or all l's. We examine the asymptotic 
growth of these trapping or consensus times T(N) as N -I 00. To do this we 
obtain limit theorems for coalescing random walk systems on the torus A(N), 
including a new hitting time limit theorem for (noncoalescing) random walk 
on the torus. 

1. Introduction. Infinite particle systems are stochastic processes which 
model the behavior of large systems of stochastically interacting components. 
Typically the components are located at the points (sites) of a set A c Zd and 
can be in several different states, the simplest case being that of two states, say 0 
and 1. The state of the system at time t is qt, an element of {o, }A; qt(x) is the 
state of the component at site x at time t. 

From the applied point of view, one is interested in the behavior of such 
processes when A is finite but very large. The usual approach is to replace A 
with Zd and then study the infinite system. This leads to a rich and beautiful 
theory. Moreover, it is generally believed that infinite systems provide good 
approximations for large finite systems [see Dobrushin (1971) for a discussion of 
this point]. We are interested here in trying to better understand what this 
notion of approximation means. 

To fix the ideas a little more clearly, let qt be an interacting particle system 
on z d and let qA be some suitable version of qt restricted to a finite set A C d. 

If t is fixed and A T Z d, then it is usually the case that q A converges weakly to 
mt. On the other hand, if we fix A and let t -A oc, then things are different. For 
instance, the contact process of Harris (1974) has a single trap, the element 
which is identically zero. The finite contact process 77 will almost surely hit this 
trap, no matter what the initial configuration. This is not true for qt; if the 
infection parameter is sufficiently large, qt has a nondegenerate equilibrium. 
Thus the ergodic behavior of qt differs from that of q A in a fundamental way. 
The problem is that simply letting t -+ oo is too crude. One still expects that if A 
is large and t is large but not too large, then locally the finite and infinite 
systems should look the same. Consequently it is of interest to study q A as both 
to- oo and AT7Zd. 

Another point of view is that the infinite systems are the primary objects of 
study and that finite systems are approximations to them. This is especially 
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relevant if one hopes to understand the behavior of infinite systems through 
computer simulations. [Durrett (1987) is a good source of simulations of many 
interacting particle systems.] Of course what is simulated is a finite system, so 
we are back to the basic difficulty: How long can you watch a finite system 
before it knows it is a finite system? 

A natural first step in looking at this problem is to study the asymptotics of 
trapping times which clearly distinguish the finite and infinite systems. This has 
been done for the contact process. The first work along these lines appears in 
Griffeath (1981), while more recent work is in Cassandro, Galves, Olivieri and 
Vares (1984), Schonmann (1985), Durrett and Liu (1988) and Durrett and 
Schonmann (1988). 

In this paper we will focus on trapping times of the voter model (and its dual, 
coalescing random walk) of Clifford and Sudbury (1973) and Holley and Liggett 
(1975). Voter model trapping times on various finite graphs have been studied by 
Donnelly and Welsh (1983), but they dealt only briefly with the torus in Zd 
which is our main interest here. We start by defining our process and giving a 
little background information about it. 

If A C Z d and pA(x, y) is a stochastic matrix on A, then the corresponding 
voter model is A, the Markov process with state space fo,1}A which makes 
transitions 

A(X) - 1- qA(X) atrate S pA(X, y)l({fA(x) * qA(y))) 
yEA 

[1A = 1(A) is the indicator function of A.] That is, each voter waits a random 
time which is exponential with parameter 1, selects another voter according to 
pA and adopts the opinion of that voter. Observe that there are two traps, all 0's 
and all l's. For A = Zd we drop the superscript A. 

The infinite system. Let A = Zd and let p(x, y) be the transition function of 
simple symmetric random walk on Zd, p(x, y) = (2d)-11{ x - yj = 1}. Write 
,q A if the initial distribution is ,u and let F(7/(A) be the law of q A. To describe the 
basic ergodic theory of qt, due to Clifford and Sudbury (1973) and Holley and 
Liggett (1975), let J be the set of invariant probability measures for 7t and let 
Je denote the set of extreme points of f. For 0 < 0 < 1 let u'e be product 
measure with density 0, i.e., luie{'1(x) = 1} = 0 for all x E Zd, and let =- denote 
weak convergence of probability measures. 

THEOREM 0. If d < 2, then Xe = {,uO uj} and ?f(7)P,) =* (1 - 0)/Le + /l1 as 
t oo. If d > 3, then there are probability measures Pe, 0 < 0 < 1, such that 

= {Po, 0 < 0 < 1} and F(7q e) e Po as t -+ 0o. 

This is only a special case of Theorem V.1.8 in Liggett (1985), and much more 
is known. For instance, the domain of attraction of each Pe can be described. 
In particular, if ,u is a translation invariant, shift ergodic measure with 
J7)(x) dlu(,) = 0, then Y(.2') =- ZP. [See Liggett (1985), Theorem V.1.9 for a 
complete discussion and details.] 

Theorem 0 indicates that clustering occurs for d < 2, stability for d 2 3. The 
clustering is studied in Bramson and Griffeath (1980a) and Arratia (1979) (d = 1) 
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and Cox and Griffeath (1988) (d = 2). The macroscopic structure of the invariant 
measures Po (d 2 3) is considered in Bramson and Griffeath (1979). In all 
dimensions it is the case that, with probability 1, if 0 < 0 < 1, then qAO(O) 
changes state infinitely often as t -+ o0, so even in one and two dimensions the 
infinite voter model avoids being trapped. 

The finite systems. We will consider a sequence of finite systems by taking 
A(N) = Zd fl [-N/2, N/2)d, N = 2,4,.... We will regard A(N) as a torus 
and write p(N)(x, y) for the transition function of simple symmetric random 
walk on A(N). That is, if x, y are in A(N), then 

p(N)(X, y) = Ep(x, z)l(y z mod(N)). 
z 

We will write (N) for qA(N). Since (N) is a continuous time Markov chain on a 
finite state space, it is easy to see that no matter what the initial state or 
dimension, (N) gets trapped at all O's or all l's with probability 1. This contrasts 
sharply with the behavior of Theorem 0. 

ASSUMPTION. From now on, unless otherwise indicated, qt will have initial 
distribution u'e and (tN) will have initial distribution lu' restricted to A(N). 

We are interested in determining the asymptotic growth of the "consensus 
times" 

T (N) = inf{t 2 ?: q(N) 0 or 1 on A(N)}) 

To describe our results we require a little more notation. Let pnN)(x, y) be the 
nth iterate of p(N)(X, y), and define 

{N2I d= 1, 
(1.1) SN N2logN, d= 2, 

{NdN d> 3, 

( 1 dd= 1, 
(1.2) G~t21r, d= 2, 

|E Pn(X A) d 2 3, 
n=O 

(1.3) q~,~t) n j (k k!(k-1)! (Ij-k)!( n+]-2) 

(1.4) qn, (t) = - ~)~(i~)ik2! exp( t() 
j=k k!(k - 1)!(j - k ! 

( ) ( ) E (-l1) j (2j - 1)( j + k - 2)! 1 j) 

for t > O 1 < k < n < 0o. The qn, k have a simple probabilistic representation 
that greatly facilitates the derivation of elementary properties of the q, k* 
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Namely, if we let D, = D(t) be a Markov chain on f 1, 2.... } with transition 
mechanism 

n-* n-1 atrate(2), 

then Pn[Dt = k] = qn k(t). See Tavar6 (1984) or Cox and Griffeath (1988) for 
more on this. 

THEOREM 1. There are random variables T depending on the dimension d 
such that as N -s 0o, 
(1.5) T.(N)/SN = T and E[T(N) /SNI - E[t]. 

If d 2 2, then 

(1.6) P[T <?S] = [0k + (1 - O)k]q00,k(2s/G), s 2 0, 
k=l 

and E[Tr] = - G[O log O + (1 - 0)log(1 - 0)]. 

In contrast to Theorem 0, Theorem 1 singles out d = 1 and lumps d = 2 with 
d 2 3. Furthermore, it shows that SN determines an important time scale for 
7q(tN). For further evidence of this consider the "density" process 

A(N) = N-d E q(N)(X) 
x eA(N) 

and let Yt be the one-dimensional diffusion on [0,1] with initial point 0 and 
generator 

1 d2 
2 y - Y)d2 

(both 0 and 1 are accessible traps). We will refer to Yt as the Wright-Fisher 
diffusion. The following result shows that the particle density on A(N) fluctu- 
ates like the Wright-Fisher diffusion with time scale SN* 

THEOREM 2. If d 2 2, then as N - o, 

(1.7) BitsN) Y2t/G 

as processes. 

The appearance of the Wright-Fisher diffusion transition function controlling 
the density of (tN) is suggestive; consider the following argument. At time tsN, 
since q(N) has density AtsN Y2t/G, the distribution of q(tN) should be approxi- 
mately Pio with 0' =Y2tlG. This is in fact correct: If d 2 3 and tN/SN -~ t E 

[0, oo] as N - oo, then 

(1.8) f( )(P[Y2,G e da'] Pa. 
The precise result is 
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THEOREM 3. Assume d > 3, A c Zd is finite and D is fixed. If tN -) o and 
tN/N- t E [0, oo] as N -so , then 

p[,(N=(X) =(x), x E A] -f P[Y2t/G E dO'] ve [?q(x) = t(x), x e A]. 

This topic is carried further in Cox and Greven (1988). 
The proofs of Theorems 1-3 are based on some new theorems for coalescing 

random walk on the torus, which we feel are of interest in their own right. The 
coalescing random walk system at is easily defined. Its state space is the set of all 
subsets of Z d and (t(A) is the set of occupied sites at time t when the initial 
state is A C Z d; we write (t(x) for (t({x}). Each particle independently executes 
simple symmetric rate 1 continuous time random walk on Z d, except that when a 
particle lands on a site already occupied by a particle the two particles coalesce 
into one. In the obvious way we can define ~(N), coalescing random walk on the 
torus A(N). Unless otherwise noted we assume that at is constructed using the 
graphical representation of Harris (1978) [see also Griffeath (1979)]. This means, 
in particular, that all {tN)(B), B c Zd, are defined on a common probability 
space with 

~(N)(Bj U B2) - (N)(B) u {(N)(B). 

There is a duality relation (see Section 4) between qt and at (q(tN) and EN)) 
that transforms certain questions about the voter model into questions concern- 
ing the cardinality of the coalescing random walk system. As might be expected, 
the behavior of the finite system {tN) differs from that of infinite system At. For 
example, suppose we start {tN) with two particles in A(N). Then in any 
dimension the two walks are eventually bound to meet, i.e., eventually OWN) has 
cardinality 1; of course this is not the case for the infinite system if d 2 3. 
Analysis of the voter model on the torus leads us naturally to the question of 
how long it takes random walks on the torus to collide. 

Random walk on the torus, and various related models, have been studied for 
some time. Montroll (1969) and den Hollander and Kasteleyn (1982) are good 
sources for references to this literature. As far as we know Theorem 4 below is 
new. To state it let X(N), t > 0, be simple symmetric rate 1 continuous time 
random walk on the torus A(N) and let H(N) be the hitting time of the origin, 
H(N) = inf{t > 0: Xt(N) = 0}. Our result is 

THEOREM 4. Assume d> 22 aN + oo and aN = o(N) as N -oo. For d = 2 
assume in addition that aN log-N/N - oo. Then, uniformly in t ? 0 and 
x e A(N) with jxj 2 aN, 

Px[H )/SN > t] exp[-t/G]. 

Note that if X(N) is uniformly distributed over A(N), then Theorem 4 implies 
that 

P[H(N)/SN > t] -+ exp[-t/G], 
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a result of Flatto, Odlyzko and Wales (1985) (see Theorems 6.1 and 6.2). The case 
d = 1 is different; it is easy to guess (and prove) what happens in this case 
[again, see Flatto, Odlyzko and Wales (1985)]. 

We can view Theorem 4 as a result concerning coalescing random walk on the 
torus. For X1, X2 E A(N) let x1 + x2 denote addition on A(N). Then we may 
regard tN)(x1) - {N)(x2) as a rate 2 random walk on A(N) up until. the time 
that the random walks meet. With JAI = cardinality of A, Theorem 4 implies 

(1.9) P[ ({xlx2}))| = i] = PXlx2 [H()/sN > 2t] 
1 - e- VIG 

as N - oo, provided that Ix1 - x21 2 aN. 
The keys to proving Theorems 1 and 2 are extensions of (1.9) which handle 

coalescing random walk systems starting with more than two walks. 

THEOREM 5. Assume d > 22 T > 0 and n> 2, and aN satisfies the assump- 
tions of Theorem 4. Then, uniformly in 0 < t < T and A(N) = {xl x2, ..., xn} C 
A(N) with Ixi - xj1 2 aN for i #j, 
(1.10) P[jQ(A))~ |-= k] qtNnk(2t/G) 1 < k < n. 

With this result and a "patch" similar to the proposition in Bramson, Cox 
and Griffeath (1986), page 615 we can "fill up" the torus with walks and obtain 
asymptotics for the time it takes ~(N)(A(N)) to coalesce to j walks. 

THEOREM 6. Let {(N) 
- A(N) an lt AjN) = inf{t > 0: It(N)1 =I} There 

are random variables aj such that for j =1, 2,... as N o, 
(1.11) ~~((N)7=a ad [GN)/SNI E[uj]. (1.11) j( )ISN =:* (j and E [j SN 

If d = 1, then 

(1.12) E[ea l] - si? X c' > 0. 
sinh Fa 

If d > 2, then 

(1.13) P[a<s] = E q< S(2s/G), s 2 0. 
k=1 

In all dimensions E[a1] = G. 

One of the themes of this work is that the spatial dependence in our models 
"washes out" in an appropriate limit. We point out that Kingman's coalescent 
[Kingman (1982)], a process without spatial dependence, is lurking in the 
background [see Cox and Griffeath (1988) where this matter is more fully 
explored]. 

Having described the main results we now state how the rest of the paper is 
organized. In Section 2 we derive the main probability estimates for random 
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walk on the torus and prove Theorem 4. In Section 3 we prove some probability 
limit theorems for coalescing random walk on the torus, including Theorem 5. 
We follow the methods of Cox and Griffeath (1988) very closely in this section. 
In Section 4 we estimate the expected number of random walks left in {(')(A(N)), 
using techniques of Bramson and Griffeath (1980b) and Bramson, Cox and 
Griffeath (1986). In Section 5 we prove Theorem 6 and then exploit the duality 
relationship between the voter model and coalescing random walk to prove 
Theorems 1-3 (for d 2 2). Section 7 contains d = 1 proofs, using the work of 
D. Aldous (personal communication) and Arratia (1979). Section 8 concludes the 
paper by stating some extensions of our results to the multitype voter model. 

A word about notation. We will use C to denote a finite positive constant 
whose value is unimportant; the value of C may change from line to line. We will 
also write EN = EN(V1, V2,...) for quantities which depend on the variables 
v1, v2,..., but which tend to zero uniformly in these variables as N -o oo; the 
value of EN may change from line to line. 

2. Simple random walk on the torus. The goal of this section is to prove 
Theorem 4. As in the introduction, let Xt(N) t> 02 be rate 1 continuous time 
simple symmetric random walk on the torus A(N), let H(N) be the hitting time 
of the origin and let ptN)(x, y) Px[Xt(N) = y]. Quantities without the super- 
script or subscript N will refer to random walk on Zd. Let FN and GN be the 
Laplace transforms 

FN(x, X) = f eXtPx[H(N) E dt], 
(2.1) 0 

GN(x, A ) = j eXtp(N)(x O) dt, 

defined for X > 0 and x E A(N). From the decomposition 

GN(X, X) = extj Px[H(N) E du]pt(OO) dt, 

it is easy to derive the fundamental relation 

GN(X, X) 
(2.2) FN(xX ) = G(O >) >0, x EA(N). 

Now let 0 be the characteristic function of discrete time random walk on z d, 

d 
(0) = eeix -p(0, x) = d-1 E cos(Oj), ' E- Rd 

x j=1 

Thjen it is well known [see Montroll (1969) for instance] that 

ei2fx y/N 
(2.3) GN(XX) =Nd E X > 0, x A A(N). 
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Actually, Montroll (1969) treats discrete time random walk, but only minor 
modifications are needed to handle the continuous time case. For a recent 
treatment of (2.3), with applications and extensions, see den Hollander and 
Kasteleyn (1982) [see also Flatto, Odlyzko and Wales (1985)]. 

As a warm up for what follows we present an unpublished result of F. Spitzer 
(personal communication) and give his proof. Let el = (1,0,... .,0), let Yd = 
PO[H < oo], let So be the unit point mass at zero and let (ca) denote the 
exponential distribution with parameter a. 

THEOREM 7 (Spitzer). Suppose d 2 3 and X(N) = el. Then as N -* , 

Y(H(N)/Nd) = Y8dso + (1 -yd) (G 1). 

PROOF. A simple calculation shows that GN(el, X) = (X + 1)GN(0, X) - 1, 
and so by (2.2), 

[eXH(N)/Nd1 (XN-d + 1)GN(0, XN -d) - 1 
EeL eJ - GN(OXN d) 

By (2.3) we have 

-d 1 -d1 
GN(O, XNd) = + N E 1 Nd - d (2M7Y/N) 

y eA(N) 1 + 
y0o 

(2.4) dO 

J-1/2,1/2]d J- 0(2iT) 

=X-1 + G, 
and the result follows, since Yd = (G - 1)7G. 

We begin now our preparations for the proof of Theorem 4. It is natural to 
start with 

(2.5) Ex [eXH(N)/SNI-GN(X, AL/SN) 
GN(O, X/SN) 

and to make use of (2.3). For d ? 3 the behavior of GN(O, X/SN) is given in (2.4). 
Ford= 2, SN = N2logNand 

GN(O, XIN 2log N) -1 1 1 
o log N+ N2 log N yA(N) 1 + X/N2 log N - 0(2i~y/N) 

y+o 

N2 log N y-A(N) 1 (2iy/N) 

where we have used f(N) - g(N) to mean f(N)/g(N) -+ 1 as N -+ oo. 
The evaluation of the last sum is fairly standard [see Montroll (1969) or 
den Hollander and Kasteleyn (1982), for example]; it converges to 2/n. Thus we 
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have 

GN(O, X/N 2log N) 2 
(2.6) X)-1+-, d=2. 

log N 17 

Unfortunately, it does not seem possible to deal with GN(X, X/SN) in a 
comparable fashion. So instead we write 

(2.7) GN(X, X/SN) = j exp(-/SN )pt)(xO) dt 

and estimate this quantity by obtaining good estimates on pt(N)(x, 0). The first 
step in doing so is the following: 

PROPOSITION. For d > 2, if tN + so, then 
(2.8) lim sup sup N d p(N)(x, 0) - N d = 0. 

N oo u tNN2 x A(N) 

For d = 2, if aN -0 oo and aN = o(N) as N -- 0o, then there is a finite constant 
K such that 

(2.9) limsup sup sup a2p(N)(xO) < K. 
N-oo u-01 IxI~aN, XEA(N) 

Since p (N)(x, y) is doubly stochastic, p (N)(x, 0) - N-d as t -- o for fixed N 
and x, but (2.8) provides some uniformity we will need later. The key to the 
proposition is a very precise expansion of pt(x, y). By Corollary 2.2.3 of 
Bhattacharya and Rao (1976), applied to pl(x, y), we have for t = 1, 2, ... 

(2.10) pt(O, x) 2(Tt ) exp( 2t ){1 + 
E tr/2Br(- + e(X )t), 

where each Br is a polynomial (depending on d) of degree at most r and 

(2.11) td12 E I|e(x, t)|O as t -+oo. 
XEZd 

PROOF OF (2.8). We first note that we may assume that tN is a sequence of 
integers and that it suffices to prove that 

(2.12) lim sup N |p(NNN2(x, O) - N j = 0. ( 2. 2 )N -~ x cA (N ) 

For if u ? tNN2 and x e A(N), 

Nd| p(N)(X,) - Nd = Nd P(N)2 (X, Y) [P(N 2(YO) -N d] 

< supNdI P(NN2(YIO) - Ndj 
y 

by (2.12). 
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Since p(N)(x, 0) - = Zdp.(x, Nz) it follows from (2.10) that 
_ /d d/2 dlx - NZ12 N dp(N)(x,0) = Nd 2? E2exp 2 ) 

(2.13) + Nd( d )d/2 dlx - NzI2 ) d r/2B(X -Nz\ 
2 2Tu) Zep 2u Jr=1i rk v~) 

+ Nd>Ee(x - Nz, u). 
z 

We let u = tNN2 and analyze this expansion in three parts. 
(i) For the "main" term, fix R > 0, let I= [- 2 ]d and write x' for x/N. 

Then 

N(d ~d/2 (~ NZ2d~'-z2 N ( 2e)pSexp( 2 ) 
(v u s~ ) 2u< ( 2 

+Nd( E d Ne(-12 -dy. 
2\ 2u I zI<RI z2u 

Then for some finite constant C, the first sum in the right-hand side above is 
majorized by 

CNdRd CR2 

u d/2 td/2 

as N -- o for fixed R. For the second sum, observe that x' E I and we can 
choose KR such that 0 < KR < 1, KR 1 as R -- co and 

IYI 1 
KR?-IX' - <K' IzI 2 Rand ye I + z. 

Using this inequality we obtain 

Nd( d/2 ~ x(-dN2 Ix'- z12 
2vu IzI>R I+z 

N(d d/2 (dN241y22 
Nd2TU) i , expf- 2) dy d 

< N d( E |lexpt 2uY ) 
2vu IzI>R-1 I+z2u 

d( d/2) ( x( dN2 Kr) d 

Kd R 
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as R -o. On the other hand, 

dd d/2 ex(-dN2Ix - 
2 

IzI>RIIz 2u ) 

> NdKd J expl- 2 2 I dy 

- KR(27T) /f exp(-_yj2/2) dy, 
IYI>CN 

where 

dN2 
CN =(R + 1) 2 =(R + 1) K t 

as N oo for fixed R. This proves that 

lim inf N( iE~d/ exp( - NIx-z2)dy 
N- ox ( 2Tu / Izl>R I+z 2u 

2 KV(27T) |/ expi 2 I dy 
Rd \ 2/ 

_ d KR 

Since KR 1 as R -- oo, we have established 
d/2 -Nz~~~~i2 1 

(2.14) N d 2I I ) e xp - 2j 
k27rtN N z\ 2tNN2 

(ii) Since each Br is a polynomial, the argument leading to (2.12) shows that 

N-boo ~ 2dId/2 dexpN12 t-NN ) 
limsup tNdk 2 tN (- N2t ) eBr N )J < 

which implies 

I d )d/2 ( dlx - NZI2) 
lim. N d extNp - 2NN 

(2.15) 
[- r/2( x - Nz\]j 

X I(tNN2) BrI 2 =0. [ \ ~~tNN /J 
(iii) It follows from (2.11) that' 

(2.16) Nd> e(x - Nz, tNN2) 0. 
z 

By combining (2.13)-(2.16) we obtain (2.12). E- 
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PROOF OF (2.9). It suffices to prove that 

(2.17) limsup sup sup a2p*N)(xO) < oCo, 
N-boo k21 IxI~aN 

x eA(N) 

where k denotes a positive integer. To see this, note that if k < t < k + 1, then 

p(N)( 0) 2 pt(N)(X, ?)P*+1N (N? 

2 p )N)(xo)P+1-t(o?o) 

2 ~~~~~()XO Co< )(Xj O),0 
where co = inf{pJ(O, 0): 0 < s < 1) > 0. The inequality ptN)(x, 0) ? c&Ip*'Y)(x, 0) 
and (2.17) imply (2.9). 

Let x' = x/N again. Then the main contribution to a2pjN)(x, 0) [from an 
expansion like (2.13)] is 

2 / ~IX - NZ12/ Ik a2 IX12 N 1 21X, _Z12 
aNexp(- lx - =zI/k a expl k)+ 1, expU N ] 

The first term above is bounded, since for some finite constant C, 

a2 / 2 a2 /2\ 

aN lxiX) aN ( aN) j - exp I - <-Nex N<C 
7Tk k ) 7k k 

for all k and N. For the second term, with I= [- 2 ]d we have 

a exp N2Ix' - z a2 ~ / (N21X' - Z12)d 
Nk z xO k I ) =xk z exp- k dy 

-k7Tk zo Z+I k a2 N 22Ky2i i2 

< Nf exp( N 41Y1 dy 

2 2 
aNKl 

=C- CN 2 

0. 

This proves that 

e-Ix-Nz12/k 
limsup sup sup aN 7rk < 00. 
N-boo k21 IxI>aN z 

X eA(N) 

We omit the analysis of the error terms which completes the proof of (2.17). E 
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PROOF OF THEOREM 4. It suffices to show that for any fixed A > 0, uni- 
formly in lxi ? aN, 

- H A(N)- 

(2.18) Ex exp - 1 + G as N 

Since for each N the left side of (2.18) is a monotone function of A and the right 
side is continuous in A, it follows that (2.18) must hold uniformly in A ? 0. This 
implies that for any bounded continuous function f on [0, co), uniformly in 
lxj ? aN, 

(2.19) Ex [ f (H(N)/SN)I G 11 f (v)e v/G d as N oo. 

It now follows by approximation from (2.19) that for any fixed t > 0, uniformly 
in lxj ? aN, 

(2.20) PX[H(N)/SN > t] - e t/G as N -- oo. 

Monotonicity implies (2.20) must hold uniformly in t ? 0. 
Turning to the proof of (2.18), recall that 

E [e-XH(N)/SN = GN(X, A/sN) 

and that by (2.4) and (2.6), 

GN(AOA./N2 log N) A-1+G. d=2, 
log N 

GN(k d )-1 + G. d? 3. 

Thus it remains only to show [recall (2.7)] that uniformly in lxl ? aN, 

(2.21) lo | et/N 1ogNtN)(X0)dt A.-1, d = 2 

and 

(2.22) |e- Pi/ p(N)xO) dt A-1, d 2 3. 
0 

We begin with d = 2, assuming aN = o(N) and aNlog N/IN oc0 as 
N -s o. Let tN < aN log N/N such that tN 0o and tN = o(log N), and 
break the integral in (2.21) into two parts. The first is 

ftNN2e-At/N2logNp(N)(x 0) dt < 1 2tNN 2 K 
AtIN2logNdt e 1~~~~~ + j e2x/2oNt 

log N o logN (N a2 

1 [ KN 2log N1 
(2.23) < 

log N 1 + (1a - e-AtN/ ] 

<l N (+KN jtN) 
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as N - oo, where we have used (2.9). The second part is 

1 e t/N2 1og Np(N)(x I O)dt < 1+O(M e Xt/N2 logNdt 
logNP N N2 log N /N2 

1 + o(M) ( XtN \ 
= ~ expt--gN) 

- 
X l-1 

as N - oo, where we have used (2.8). This finishes the proof of (2.21). 
An additional estimate we need for proving (2.22) is 

P [jXtj ? t1/2 log t] < C/t2, t ? 0. 

This is easily proved using exponential type estimates. Now for any finite set 
r C Zd we have 

ptW(xI O) pt(x, Nz) 

<Ir n (x + NZd)Ipt(OO) + E pt(OX + Nz). 

Since Pt(O, 0) < C/td/2, the choice r = I- t1/2 log t, t1/2 log t]d above yields 

(N)I\ ~C (t1/2 log t d 
Pt(O.xN)d/ + P [jXtj 2 t1/2] 

<(log t + 1) 

Now break the integral in (2.22) into two parts. The first is 

N2 log Ne-Xt/Ndp(N)(x 0) dt 
0 

N2log Np(N ,o) dt 

? T sup sup p (xO) + Cf ogN( gN) + dt 
IxI~aN O~u?T tJX 

) 

C 
T 

as N oo for fixed T. Now let T -- oo to obtain 

lir N2 log NeAt/Ndp(N)(X, 0) dt = 0. 
N- oon 
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Using (2.8) the second integral is 

J e t/NdpN)(0, x) dt= (1 + o(1))N J e-xt/Nddt 
N2 log N N2 log N 

- A-1 

as N -s o. This completes the proof of (2.22). E 

3. Coalescing random walk on the torus-probability estimates. We 
assume throughout this section that d > 2. The n = 2 case of Theorem 5 is 
covered by (1.9), so we turn to the analysis for n 2 3. The major step in the 
argument is establishing that 

(3.1) P[JItsN (A N)| = -+ exp[-2t( )jG] 

uniformly in A(N) and t as N -- oo. To obtain (3.1) we will follow the approach 
of Cox and Griffeath (1986), keeping as close as possible to the notation used 
there. Define 

T(N)(i, j) = inf{t ? 0: I tN)({x, xj}) 1 

-(N) - minr(N)(i, i) 
i*j 

Ht(N)(i, j) = {T(N)(i, j) < tSN? 

F(N)(i j) = {-(N) - r(N)(i, j) < tSN}, 

(N)(t) - p[ (N) < tSN] 

Using this notation (3.1) is equivalent to 

(3.2) q(N)(t) -- 1 - exp -2t( )/G] 
and (1.9) is equivalent to 

(3.3) P(Ht(N)(i, j)) 1 - e-2t/G. 

By examining which pair of particles hits first, we have, for i # j, 

P(Ht(N)(i, j)) = p(F1(N)(i j)) 

(3.4) ? {k~l}#{~,I}Ya Np JtN[(N) = r(N)(k 1)edU, ~(N)(X) -Ya (3.4) + T T0 (k 1) ^ u (^ 

u(Xj) =yt]P[ )-u({Ya y,81)| = 1] 

It will follow from (3.7) and (3.8) that 

(TSNp[-(N) 
= (N)(k, 1) E du, |(N)(x) - (N)(xj) I < a 

= EN ? 0, 
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so we may assume in (3.4) that IYa - ? aN. In this case 

P[tNu({YaYi})| = iJ =PY[H(N) < 2(tsN- u)] 

=1 - exp [-2 (t- -) G] + N 

by Theorem 4, where y =a - y. Consequently 

E ftsNP[,(N) - T(N)(k, 1) E du, {(N)(xi) 
= Y {f (xN ) y] 

Ye, Y,8 

XP[tN) u({Ya, Y,)I = 1] 

O f P[NT T (k, 1) E du] (1 - exp[ -2(t - -)G]) + 6N 

P(F(N)(k l))e-2(tu)/G du + 6N' 
0 

the last equality from integration by parts and a change of variables. 
Combining this last result with (3.3) and (3.4) we see that 

1 - e-2t/G = p(F(N)(i, j)) + - tp(F(N)(k l))e-2(t u)/G du + eN- 
G (k, l} (i, j} 

Summation over i, i leads to 

n 
e - &2t/G) 

(3.6) 2 rI\ ltN2/ 
- q(N)(t) + -e 2t/GIi - liqt (u)e uGdu + 6N* 

G 2\~ JJ0 ~ " 

It now follows [see the proof of Lemma 2 of Cox and Griffeath (1986)] that as 
N -- oo, q(N)(t) - the solution of 

fl\ 2~~~~~G (2n)(1 - e-2t/G) = q( t) + G e-2t/G [(2)- lj q(u)e u/Gdu, 

that is, 

sllen q(N)(t) -+ q(t) = 1 - exp( -2t( )/G) 
uniformly in A(N) and t. This completes the proof of (3.2) except for the 
justification of (3.5), which we will now carry out. 
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PROOF OF (3.5). There are two cases to consider. Let X(N)(X), X E A(N), be 
independent random walks, X(N)(x) = x. We must show 

(3.7) JTsNP[T(N) = T(N)(1,2) E du I ( X)(X3) U (X4)I1 ? aN] 0 

(3.8) JTSNp[T(N) = T(N)(1,2) E du, I (N)(X) -(N)(x)I ? a 0 

We will prove only (3.8) as the proof of (3.7) is similar (and slightly easier). If 
tNN2 Ts- , then by using the independent random walks X(N)(X) we can write 

TsNP[ -(N) - T(N)(1,2) E du, I(N)(x) -(N)(xl) ? a] 

< Pi T(N)(1, 2) < tNN2] 

(3.9) + JTNP[TN)(1,2) E du, IX(N)(X3) - X(N)(xl) I < ax] 

P[T(N)(1,2) < tNN2] + fT8NP[r( )(1,2) E du, X(N)(X1) = y] 

XP[IX(N)(X3) -yj < aN], 

where we have also used T(N)(1, 2) to denote the first time X(N)(xl) = X(N)(x2). 
Choose tN such that tN x 00, tN/log N - 0. Then the right-hand side of (3.9) 

is majorized by 

PX1- X2 [f(f) _< 2tNN2] + Cj P[T(N)(1,2) E [tNN2, TSNII E (N) 2 N2l ad 
< PX1-X2 

C 
- Nd 

SN SNJ N 
-0 

using Theorem 4 and (2.8), since tNN2/sN  O. 0 

With (3.2) established we can finish the proof of Theorem 5 by induction. The 
induction hypothesis is that for aN satisfying the assumptions of Theorem 4, 
uniformly for t E [0, T] and A(N) = {xl,..., xj c A(N) such that lxi - xjj > 
aN for i j, 

p I 
tsN 

(A(N-) kJ -* qfl(t), 1 < k < n. 

The case n = 2 is covered by (1.9) and the n - k case js covered by (3.2). The 
induction step is to prove that uniformly for t E [0, T] and B(N) = 
{y1,..., yn +} C A(N) such that Lyv - yjj ? aN for ij, 
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To prove this let 6(N) = inf{t ? 0: I(N)(B(N))l = n} and fix k < n. Then 
P[|sN)(B ()) I|= k] 

- 

, | e[a(N) du, (N)(B(N)) = C(N)]PpI (jN) (C(N))I - 

C(N)0 

where C(N) = {z1,..., Zn) C A(N). It is a consequence of (3.5) that 

fTSNP[-(N) E du, (N)(B(N)) = {z1,... zn} and 

1z, - zjj < aN for some i # j] -> 0, 
and so by using the induction hypothesis we obtain 

p[ (N (B (N)) k] 

= , JNP[5(N) E du, ,()(D(N )) = Ci] ( 

|O~~C P [B aqtd qk t - + '- N 
C(N) 0SNU~Iqk~~~+ +6 

s 
JtNp[ -(N) - du]qf kt U 

+6 

(n 2 1)iGjexp( 2u( 2 )/G)qn k(t- u) du + 6N 

(n 2 1)2 jexp( 2u( 2 )/G)qn k(t - u) du 

as required. This completes the proof of Theorem 5. 
In preparation for the proof of Theorem 2 we will establish another coalescing 

random walk result, this time for random walks that start moving at different 
times. For t1 < *. < tk and Ai c A(N) let {(N)(A1 tj;...; Ak, tk) denote a 
coalescing random walk system in which random walks start from each point of 
A, at time ti (they are frozen until this time) and then execute coalescing 
random walk motion. These systems were used in Cox and Griffeath (1983). For 
t > tk and positive integers m, ni define 

qnl;m(tj; t) = qn1,m(t t1), 

qnj, %- ..., nk; m( tD t2~ .. * tk; t = Y. Y. Y. qni, ll( 2 tj qn2 +11l,12( t3 t2 ) 
11 12 Ik-1 

X 
qnk-1+ k-2, k-1(k tk-1)qnk+l-1, m(t - tk). 

It is straightforward to check that 

qnl, n2,. , nk; m(t1, t2 ... I tk; t) 

(3.10) = qnj, nh-i.,nk_ ;I(ti, t2...,I tk-1; tk)qnk+1,m(t - tk) 
(3.,t) 

= qnI(2- tjq+nn,.,nk; M(t2, .. tk; t). 
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THEOREM 8. Assume d > 2. fix T > 0, k > 0, ni...I n'k let aN-* 0o, 
aN = o(N) as N-+ xo. Then for fixed 0 < t? < <tk < t, uniforrnly for 
Ai= xj = 1,..., n)} C A(N) such that Ixi - x? 2 aN for all i and all 
a =A /3 

(3.11) P[|{tN I (A1, tlSN; ... ; Ak, tk5N) = m] 

*qn, n2, nk; m(2tl/G ,,k . /. I 2tkG; 2 /G). 

PROOF. The k = 1 result follows from Theorem 5, so we assume now that 
k 2 2 and proceed by induction. The idea is to run the system until time t2SN 
and look at { )(A1, tlsN) = {y1 ... Yl}. By constructing independent random 
walks and applying the proposition of Section 2 it is easy to see that 

P[3 y p, 
E 

(sN)(Aj, tlIN)c yd I N and IY - YpI < aN] ? Ca/Nd, 

tNE {)(A1, tlsN) and xB E A2 with lyK - xpl < aN] < Cad/Nd. 

Thus 

t[it)N = m] =EN+ t N P[S (AlXtsN) = {Y1..Y., ] 
?I Y1'.. *** ye 

xP[ ttSN-t2SN(2 U {y1,.., yz},O; A3, t3SN- t2SN; 

**;Ak, tksN- t2SN) m] 

(where the sum on the yi is over IYa - YpI 2 aN and IYa - xl I aN, all xB E A2) 

- Fqnl, e(2(t2 - t1)/G) 

X qn2 + ., n3, .-nk; m(0, 2(t3 t2)/G,..., 2(tk- t2)/G; 2(t- t2)/G) 

qnj, = -., nk; m2 t /G *I./. 2tk1G; 2t/G) 

by using Theorem 5, the induction hypothesis and (3.10). 01 

4. Coalescing random walk on the torus-expectation estimates. In 
order to prove Theorem 6 we need some control over the number of particles left 
in the coalescing random walk system {tN) = {tN)(A(N)) (we will use this 
abbreviation throughout this section). The following result gives us this control. 
It is similar to Theorem 1 of Bramson and Griffeath (1980b) and the proposition 
in the introduction of Bramson, Cox and Griffeath (1986), although the proof 
here is easier. First define gN(t) by 

{Nl/#, d= 1, 

gN N2 log(1 + t)/t, d = 2, 
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PROPOSITION. There are finite constants Cd such that 
(4.1) E [IN)I] Cdmax(1,gN(t)), t > 0 N = 2, 4,.... 

We will prove this proposition via a series of lemmas. The first is: 

LEMMA. If B c A c A(N) and h,(A) = minX, YEA(N) PXJH(N) ? s], then 

(4.2) E[I(N) (B)II < IBI - (IBI - 1)hs(A). 

PROOF. We may assume that IBI ? 1, so fix x0 E B and define 
1 (~(N)(X) =-(N ZS = E (t )X= t )(X0)), 

x e B\{(x} 

the number of walks which coalesce with the walk starting at x0. Observe that 

I(N) (B) I < IBI - Zs. 
To get (4.2) take expectations and use E[ZS] ? (IBI - 1)hJ(A). cl 

For the next step, let [tJ denote the greatest integer less than or equal to t. 

LEMMA. If t < r < r + s < 2t, 2E[I(tN)I] 2 4-dE[I1tN)I] 2 2d and At is a 
cube in A(N) of side [8N/E[I1tN)I]l/dI, then 

(4.3) E[It(NII] < E[I{(N)I(1 - lh,(At)) < E[It(N)l]exp(- hs(At)). 

PROOF. Let B,, 1 < i < n(t), be disjoint cubes covering A(N), each Bi no 
larger than At, with 

NE [1ItN)II 4d 

E 1(N] < 

gcBE,12itn)I] 
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Using the inequalities (4.2) and (4.3) and writing h. for h8(At) we have 

E?E [l IIN(C) l]I< E [ICil - (ICil - 1)h.9] 
i i 

- (1 - h8)EICjI + hsn(t) 
i 

(1 - hs)EICil + 1h8E[ItN)1]. 

Using this estimate in (4.4) we obtain 

E [It(N)I] < (1 - 2hJ)E [1N)I]X 

as required. E 

LEMMA. If fN(t) = E[g(N) ]/gN(t), then there exist finite constants Md 
such that 

(4.5) fN(t)<Md, O<t<4 N=2,4,... 

(4.6) fN(2t) < max{Md, fN(t)}, t > O. N =2,3. 

PROOF. If t < 4, then since 1((N)j < Nd, (4.5) holds with Md = 4. Now if we 
cannot apply (4.3), then either 

E [1t(N) |] < 8 d 

or 

E[I((N)I] < 2 * 4-dE[(IN)II, 

and in either case, for all d it is easy to see that (4.6) holds with Md = 8d. So we 
may assume that (4.3) can be applied, in which case iteration of (4.3) gives 

(4.7) E [142t l] < El( )lep- 2 |- hs(At)) 

To employ (4.7) effectively we recall from Lemma 5 of Bramson and Griffeath 
(1980b) that if B is a square of side b > 8, then there are positive constants ad 
such that 

(a1, d= 1, 
hb2(B)? (a2/logb, d = 2, 

la3/bd-2, d 2 3. 

We now let s depend on t by setting s to be the square of the side of At, i.e., 
s = s = (8N/E[I1tN)I]l/d)2. We may assume that st < t/2, else it is easy to 
check that fN(t) < 128d/2, t 2 2. With this choice we have 

(4.8) L t ] 2~ t -tE 1() 2|N 
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and 
a1, d= 1, [ 8N 1 

a2/1hg 1/2 
| d= 2, 

fN(2) - [14tN)| 

(4.9) ~ ~ ~ l5 hst(At] > 1 tEI | 
- I~~~~~- - 

N eP [2 128N2 aij 

fN(Lt)exp[logV - 256N (t)] 

and so (4.6) holds with M1 = max{V2ad, 128 log 2/a }. 
d = 2: As with d = 1 we have 

fN(2t) 2tEII i](2t 2 

2 tE [It( N)I [] 1 tE [I( N)I I a2 

N2 log2t e 2 128N 2 128N 

fI(t( og( t) 
) exP[log2 - 26fN(t) lo( 

logt- 
1g Nt ] < 0fN ( t1exp [og~ 2 a 2562 

a, 
(gf)])J 

256 lg(//lot 

?N2t fNt~eP1g 

unless 
log t 

L~~~~ J 

log(8// ago)- log fN(t)? 

Since the denominator is positive (fN(t) ? t/log t) this can happen only if 

logfN(t)<4 25g -log t ' 

<41og8, 
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i.e., fN( t) < 82. Putting all of the pieces together we have (4.7) with M2= 
max{ 128, 256 log 2/a2}. 

d 2 3: As above, 

2 tE [i~(Ni] 
fN(2t) = N | 

2tE [1tN)I] [ 1 tE [I((N)I] 2/d E [I(N)II 1/d d2] 

< Nd exP 2 128N2 ad 8N 
) ] 

fN(t)exp [log 2 - aXd_()] 

and so (4.7) holds with M1 = max{128d/2, 4 * 8d log 2/ad}. C 

The proof of the Proposition is now almost immediate, and is exactly the same 
as the last paragraph in the proof of Lemma 4 in Bramson, Cox and Griffeath 
(1986). 

5. Proof of Theorem 6, d 2 2. We start with the proof of (1.11). Fix t > 0, 
j> 1 and aN as in Theorem 4. Now fix n ? 2 and select A(N) = {xl,..., xn C 

A(N), IXc - xl 2 aN for a # P3. Then since t(N)(A(N)) c, 

p I tsN)(A(N))| 'i] < p |(N) )(A (N)) I <j] 

(5.1) i 

k=1 

as N -o by Theorem 5. Letting n - oo we obtain 
I 

lmsupP[ 
I )N (A(N)) ?1] ?< q 2G) 

N- oo k= 

For the reverse inequality fix M (large) and 81, 82 > 0 (small). By Chebyshev and 
the proposition of Section 4, 

p I ~lsN)(A(N))| I2 M] < E[|I 1SN)(A(N)) I IM 
< cd/l8M. 

It follows from (2.8) and the usual construction with independent random walks 
that, uniformly in k < M and {y1,..., Yk} C A(N), 

P[ ~(N (A(N)) = {y1,..., Yk), 3 zj# Z2 e {(N) (A(N)), IZ1 - Z21 < aN] 

EN ? 0. 

Combining these remarks with Theorem 5 applied to (t-)82)sN( 2N (A(N))) and 
letting 

At(zj,** zt) {tsN%(A(N)) = {Zl,..., Zj), IZaZpI - aN for a }, 
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we have 
M 

[ l(N)(A(N)) ?1] 2 EP[ |((t82)sN({ 1 *,t) |IjIA.(z, ...* z") 
P~ ~ ~~~~x|~l .,N (t8S(Z{) t1S ( |.<.M 

XP[|( 'jj . ,)~N (A(N)) I < M] 

( ~~~~~~81S E Equ ) N 

X P IA g( (AZ1NZ)) | |Mis (N 

(~Cd \MI 
2 (1 - E 1M E qek(e2(t82)/G) + EN) 

? - 
d 

6j)(qoo,kJe- 2(t-82)/G) + CN. 

If we first'let N xo, then M o- and then 81 and 82 - 0, we obtain 

li inf 
P|tSN 

(A (N)) I < j] 2 q00 *(e-2 N --.ook1 

This inequality and (5.1) prove 

lim. P[|IsN (A(N))| =j1 = q j(e- VIG 
N -oo tS 

which is enough to prove the weak convergence in (1.11). 
The moment convergence in (1.11) follows from weak convergence provided 

the sequence ajN)/SN is uniformly integrable. We will prove more. Since 

p[ajr(N)/SN < 1] = P[N (A(N)) < 1] 

Eq.,k(e )1 
k=1 

(a positive number) as N - oo, there exists Si > 0 such that for all N = 2,4, ... 
we have 

P[J()SN <1] 2 Si 

Now for any A C A(N), since t(N)(A) c (N)(A(N)), we must also have for all 
N= 2,4,..., 

P a(N) N < l(N) = A] 2 . 

This inequality, the Markov property and iteration lead to 

(5.2) P[ (N)/SN 2 n] (1- ), 

which certainly implies uniform integrability. This finishes the proof of Theorem 
6, d > 2.0 
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6. Duality and the proofs of Theorems 1-3, d 2 2. Duality is perhaps the 
chief tool used in analyzing the voter model. It is well documented in the 
literature, so we will only state the results we need and refer the reader to 
Griffeath (1979) and Liggett (1985) for proofs. It is convenient to write A c q for 
sets A c A and configurations q E (O, 1}A to mean A C {x: q(x) = 1). The first 
duality equation we need is 
(6.1) PJB cqt] = P[ft(B) cq], 

where P,, indicates that the voter model qt starts with qo = a. If we start qt in 
product measure with density 0, then summation in (6.1) leads to the second 
duality equation 
(6.2) P[B cqt] = E[0Itt(B)I] 

If O < t? < ... < tk, then 

P4jBi C ?t, 1 < i < k] = P[ttk(BkO; Bk-1, tk - tk-1; * l ; B1, tk- tj) C q], 

where ((A1, sl; ***; Ak, k) is the coalescing random walk system defined in the 
previous section, with particles starting at the points of Ai at time si ("frozen" 
there until that time). Finally, if % starts in product measure with density 0, 
then 

(6.3) P[Bi c %i, 1 < i < k] = E[01N(BkO;Bk1, tk-tk1;. ;Bltk-tl)I] 

Before beginning the proofs of Theorems 1-3 we point out two related duality 
equations, discussed in Tavare (1984), Cox and Griffeath (1986) and Cox and 
Griffeath (1988). These equations connect the Wright-Fisher diffusion Yt and the 
death process Dt defined in Section 1. The equations are 

m 
(6.4) Es [Ytm] = Em[ODt] -E iqm, M) 

j=1 

(6.5) E[ Ytiml] -E 0 jqnknk-l.- n; j( tk tk-1 ... tk - t1; tk). 

With these equations in hand and the coalescing random walk results of the 
previous sections we can now begin the voter model proofs. 

PROOF OF THEOREM 1. Fix t 2 0. Then 

P[T ? s] = tS )- 1 or 0] 

= E [ 1ti8N(A(N))I]+ E (1 - 0)It)(A(N))j] 

00 

E3 [0k + (1 _ O)k] q0, VIetG) 

by using (6.2) and Theorem 6. To obtain moment convergence we note that T(N) 

is stochastically smaller than a(N) and since a(N)/sN is uniformly integrable 
[recall (5.2)], so is T(N)/sN. This is enough to guarantee convergence of expecta- 
tions. To see why T(N) is stochastically smaller than a(N) we use duality and 
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compute 

P[T(N) > t] = 1 - E [tIN)(A(N))] + E (1 - 0)IttN)(A(N))l] 
00 

E [0k + (1 - O)kIP[I(N)(A(N))I = kI 
k=2 

< P [ (tN) (A(N)) I 2 21 
=p[G(N) >t] 

Here is the computation for E[T] = - G[O log 0 + (1 - o)log(1 - 0)]: 

fP[T > t] dt E [0k? (1 - )k ]|jPD2t/GkI dt 

00 G 
- E [0k + (1 0)k] - E[holding time in state k] 

k=2 2 

- E [k + ?(_)k]_(k) 

- -G[Olog ? + (1 - 0)log(1 - 0)]. ? 

PROOF OF THEOREM 2. We will prove Theorem 2 in three steps, starting 
with: 

Weak convergence of marginals. Fix t 2 0 and m > 1. We will obtain 

A 
tsN Y2t1G 

by showing that 

(6.6) E [l t ) ] moYtG 

To do this we choose aN as in Theorem 4 and compute 

]= Nm P[tN(xM) = 1,p1 ? iN <m] 
X,... IXmeA(N) 

= N-md P[()(xi) =1< i< m]+EN 
X. xmEA(N) 

Ix-x# I>aN, a 

- N-md fi E [8Nx1{ { m})I] + EN 
. X.... . Xm e A(N) 

m 
= N-md 9i E 0jqiM j(e-2t/G) + N (by Theorem 5) 

X.,.... XmEA(N) jl 
IxG-x# IaN, a0* 

m 
0 4iqm Mj(e-/G 

j=1 

= EG[Y2t/GI 

by (6.4), proving (6.6). 
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Weak convergence of finite-dimensional distributions. Fix k ? 2, mi 2 1 and 
0 < tj < *.*.* < tk. We will prove 

(6.7) E (((Nt) )m] 
... 

N ON E19 Y2 ~~t1/ G ... Y2tk/ZGJ 

which is enough to prove 

(A(N) *., t Y2 tk/G)Y 

We compute as before, 

... (A(tN )M] 

N 

ON~~~~1 = N -d(ml + *-- m*) E q[7t(N(X)= 1 < i < k, 1 < j< mi] 
X i . .. i Xk 

XI'---, .4), xje A(N) 

= 21 + 22, 

where 21 contains all the xl,..., xk such that Ix' - x'I ? aN, a # 13, and 22 
contains all the other terms. By counting it is easy to see that 22 = EN and by 
the duality equation (6.3), with B' = {xj, 1 < ? < mi}, a typical term in 21 is 

p[7q(Nt)()= 1 < i < k, 1 < j < mi] 

- EOI~4$BO;k kltktl ... ;B1,tk -tl)II =E [ 01 t*8N (B ,0; B* , tk-ol _--; Bt-l 

Eq fnk, nk-l ,.., nl; m(, 2(tk - tk-1)/G I ... .2(tk - t1)/G; tk) 
m 

- Ee[Y2tlG 
... 

Y24/QG] 

by (3.11) and (6.5). 

Tightness. It is possible to obtain tightness on path space using Corollary 8.7 
of Ethier and Kurtz (1986), Chapter 4 by showing that if f: [0,1] -* R is 
continuous, then for each t> 02 

(6.8) lim sup Ef[f( (tA()] -EIqI/Nd[ f(Y2t/G)f = 
N --oo 

where q E {o, 1}A(N), 1qj = Exq(x) and the subscripts indicate that we are 
starting the voter model with q(N) = q and the Wright-Fisher diffusion with 
Yo Jq I/Nd. Since each continuous f is the uniform limit of a sequence of 
polynomials, it suffices to show that for each n 2 1, (6.8) holds with f(x) = x'. 
But D. Aldous (personal communication) has pointed out that this is not 
necessary. Since MN(t) = -(tS) is a martingak for each N, MN(t) is bounded in 
N for each t and Yt is continuous, tightness and (1.7) follow from convergence of 
the finite-dimensional distributions (already proved) and Proposition 1.2 of 



1360 J.T.COX 

Aldous (1989). It is easy to see that MN(t) is a martingale for fixed N, since the 
dynamics imply that if q(N) = q and 

r('q) = E q(x)(1 - q(y))p(N)(x, y), 
x, y A(N) 

then q(tN)j [q(N)j + 1 at rate r(q) and q(tN)j 
( j~N)I - 1 at rate r(q). El 

PROOF OF THEOREM 3. By inclusion-exclusion it suffices to show that 

(6.9) P[,q(N)(X) = 1, x E A] -| P[Y2t/a E d] Po,[,q(x) = 1, x E A]. 

We will assume that tN/Nd >* t E (0, so); the two remaining cases are easy to 
handle. In order to prove (6.9) we need a characterization of the Po of Theorem 0. 

Let {c,(A) = limt ojit(A)j and let pn(A) = P[()(A) = n]. By Theorem 0 
and the duality equation (6.2), 

Po [q(x) = 1, x E A] = lim E[OIlt(A)I] t- oo 

JAl 

- , pn(A) 0. 
n=1 

The duality equation (6.4) now implies that the right-hand side of (6.11) equals 
JAl 

E Pn(A) En[ OD(2tlG)]. 
n=1 

This and an application of duality to the left-hand side of (6.9) show that it 
suffices to prove 

lAl 

(6.10) E [OI{(A)l> E pn(A)En[OD(2t/G)] 
n=1 

To do this we introduce a collection of independent random walks on Zd, 

{Xt(x), x e Z d}, where Xo(x) = x. Standard random walk calculations can be 
used to show that we can find TN -? 00, TN = o(Nd) and aN ' 0o, aN = o(N) 
as N -*oo such that for all x E A, 

(6.11) P[IXt(x) I < vN/1ogN, 0 < t < TN] 1, 

(6.12) P IXTN(x) I < aN] O 

Now define random walks Xt(N)(x) on A(N) by 

4P Xt(N)(x) = (Xt(x)mod N) - N/2. 

Using the Xt(x) and Xt(N)(x) it is clear that we can construct the processes 
(t(A) and {tN)(A) such that (t(A) = {tN)(A) for all t < YN, where YN = 
inf{t 2 0: ltt(x) I VN2/log N for some x E A). 
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Letting a tilde ( ) indicate a summation over B = {xj, ..., x,} such that 
lxi - xjj 2 aN for i # j, we have 

JAI 
E [OI#)(I = ] E EP[tV)(A) = BJ E [OIN-TN(B)II (Markov property) 

n=1 IBI=n 

{Al 
E _ P[{TN(A) = B1E [OSNTN(II +EN [by (6.9)] 

n=1 IBI=n 

JAl - 

= ? E P[ TN(A) B] E [OlSNTN(B)l] + EN [by (6.12)] 
n=1 IBI=n 

P[JITN(A)| = n]E[n D(2t/GNd2TN/GNd)I + eN 
n=1 

(by Theorem 5) 
JAI 

E PN (A )En [ 61D(21/G)] 
n=1 

as required. EJ 

7. d = 1. The techniques we have used in the previous sections to analyze 
the voter model and coalescing random walk for d 2 2 are not appropriate for 
d = 1. It is not a technical failure, but rather the behavior of our processes which 
differs substantially in these two regimes. Fortunately there are methods devel- 
oped for the d = 1 case by others [Bramson and Griffeath (1980a) and Arratia 
(1979)] which we can adapt to the problems considered here. In addition, there is 
a beautiful observation of D. Aldous (personal communication) that leads to the 
explicit formulas for a, in Theorem 6. 

Arratia (1979) constructs a system ct of coalescing Brownian motions on the 
line R. Particles execute independent Brownian motions until they meet, at 
which time they coalesce into a single Brownian motion. The remarkable feature 
of this process is that the system starts at time 0 with a particle located at every 
x E R, and by each positive time t the system has only finitely many particles in 
every bounded set. Furthermore, Arratia proves an invariance principle for ct 
and ,t which is the point process determined by the particles in ct. 

Appropriate modifications of Arratia's work can be used to define a system 
C= t{c(x), x E ( - 2, 1]} of coalescing Brownian motions on the interval ( - 2, 2] 
viewed as a circle of circumference 1, where ct(x) is the position at time t of the 
Brownian motion started at x. The process can be visualized as a system of 
cannibalistic ants crawling down a tin can. Letting 7rt = {ct(x): x E [- 2 ))} 
Arratia's work implies that as N -o, 

(7.1) N-'f$ )(A(N)) 

as processes. 
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PROOF OF THEOREM 1, d = 1. Using duality and (7.1) we compute 

P[r(N)/N2 < t] = p[(N)1 or] 

= E [OI tN2(A(N)) + E[(1 - N(A(N)) 

00 

[k + (1- o)k]p[IctI = k], 
k=1 

thus T(N)/N2=* T. As in Section 5, T(N) is stochastically smaller than U(N) and 
U(N)/N2 is uniformly integrable. Thus E[T(N)/N2] -* E[T]. C 

Similar remarks prove the one-dimensional version of Theorem 6. The exis- 
tence of the limit of a(N)/N2 can be demonstrated without using Arratia's work; 
the key fact is Aldous' observation that for each N, 

(7.2) af N) 
2 a 

where 5(N) is the time it takes (d = 1) simple random walk starting at 1 to reach 
N conditioned on reaching N before 0. We will explore the consequences of (7.2) 
now, leaving its proof for the next section. 

It is a simple matter [follow Problem 6 of It6 and McKean (1974), page 29] to 
compute the distribution of 5(N), at least in terms of Laplace transforms. One 
obtains 

N1 4 - 1(a) -N1(a) 

where +(a) = 1 + a - 62a + a2. Using (7.3) it is straightforward to check that 
as N -+ oo, 

E[e-aG(N)/N21 a > 0 

and 
E )I N ] 3 

finishing the proof of Theorem 6. 

8. Multitype voter models. As in Cox and Griffeath (1988) one can con- 
sider the multitype voter model or stepping stone model. Given A c Zd and 
K < oo the K-type voter model -qt on A c Z d with transition matrix pA has state 
space {o, 1,..., IK - 1}A, and makes transitions 

(8.1) qtA(x) i at rate E pA(x, y)l({A(y) = i}) 
yeA 

for i> * tA(X). As before, we use 't to denote the process when A = Zd and 
4N) when A = A(N), governed by the transition function of simple 

symmetric random walk. For 0 = (01,..., 0,_-) let uos denote product measure 
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We may also consider the case KI= 0o, in which case it is natural to take 
(Z d)Zd as the state space and let the initial state satisfy q(x) = x, x E Z d. The 
dynamics are as in (8.1), except i is now a point of Z d. This model is sometimes 
called the stepping stone model [see Cox and Griffeath (1987) for a brief 
discussion of its history and a list of references]. 

What can one say about the behavior of large finite systems for these K-type 
voter models? The answer is: essentially the same things (appropriately modi- 
fied) as when K = 2. Extensions of this type are carried out in Cox and Griffeath 
(1988) in studying the rate of clustering of the voter model in two dimensions. 
We will not give detailed proofs, as the K < oo is fairly easy to handle, while the 
K = 00 case requires more details than is appropriate to include here. We will 
discuss only the d 2 2 case. One of our main reasons in stating these extensions 
is to write down a few formulas that are useful for comparisons with computer 
simulations. 

K < o. The analogous versions of Theorems 1 and 2 are true. Let T (N) be 
the time it takes the process to reach exactly j types, i.e., 

T(N) = inf{t ? 0; 3A c {0,1,..., K - 11, JAI =j1 

(N)(x) E A for all x E A(N)} 

and let 7tN) be the K-vector (A(tN)(0), A(tN)(l),..., /A(tN)(K - 1)), where 

(tN)(i) = N-d E 1((N)(x) = i). 
x e A(N) 

Let Yt be the K-type Wright-Fisher diffusion which has generator 
1 IC-1 82 

2iE -Yi [Suj 7j] ayidyj 

and lives on the state space {y = (yo0..., Y-): y 2 O? E0y, = 1). 
By using techniques of this paper and of Cox and Griffeath (1988), one can 

prove: If q(N) has initial distribution [te, then there are random variables Ty such 
that 

(8.2) T(N)/SN T and EIN/sN] =*E[Tj] 
and 

(8.3) AN) > y2t/G' * 

as processes. The simplest way to approach (8.2) seems to be showing that for 
anyA c {01, ..., K - 1}, 

P[forallx E A(N), yqN)(X) CA] -E [ i q~1(2s/G) 
z ~~~~~~~~~~j= 1 ivZA 

(which follows from Theorem 6) and using inclusion-exclusion to get an explicit 
representation for the distribution of Tj. The proof of (8.3) involves an extension 
of the duality equations (6.4) and (6.5). 
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The case j = 1 in (8,2) is particularly simple: 

00 KC-1 

P[ 1T < S] =E E Of qo,'AsIG) 
e=1 i=O 

and consequently 
Kc-i 

E[1]= -G i logOi. 
i=O 

Assuming further that 0 = (K1,..., K-1) we have 
K 

(8.4) E[T1] = G(K - 1)log 
K-i 

It is interesting to compare the K = 4 case of (8.2) and (8.4) with the D2VOTER4 
simulation of Durrett (1987), which is a simulation of the two-dimensional voter 
model with Kc = 4 on the torus of side N = 25. The simulation seems to produce 
sample means of Tr(N)/SN rather close to the value in (8.3). 

K = 0X. In this case (8.2) is also true, and the distribution of T; is the same as 
that of aj of Theorem 6, namely 

P[T ? s] = E q., k(2s/G). 
k=1 

The version of (8.3) that is true with K = X takes a little explaining. For y E 7 d 

let 

tN)(ya) = N -d E 1( (N)(X) 
= y). 

xcA(N) 

Using the notation of Ethier and Kurtz (1981) let p(tN) = (81 82 .. .) be the 
AtN)(y) arranged in decreasing order and viewed as an element of the infinite- 
dimensional simplex VO = {Y = (Y1,Y2,J.): Y1 2 Y2 2 ... ? 0, Y2=1Y;= 1} 
Ethier and Kurtz (1981) study a class of diffusions which live on VO, including 
the one with generator 

1 a2 
2 E, iYa[8- Y I a Yj 

defined on an appropriate domain. A remarkable fact is that the diffusion Yt 
with this generator can be started at (0, O. ... ), in which case it jumps instanta- 
neously into V... Using the techniques of this paper and of Cox and Griffeath 
(1988) one can prove that as N -> co, 

(8.5) P(s)(Y) 2t/G. 

Finally, here is the proof of (7.2): Consider the voter model r4(N) on A(N) with 
all types distinct, indexed by A(N) itself (the K = 0O case). In this setting the 
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duality equation (6.1) becomes 

p[,(N)(X) = y, all x E B] = P[((N)(B) = {y}]. 
Using this duality we can write 

p[((N) < t] = P[I(N)(A(N))I = i] 
= p[ q(N) has exactly one type left] 

= E P[q(N)x on A(N)] 
xcA(N) 

= NP[q(N) = O on A(N)]. 

Now {x: 71(N)(x) = O} is always an interval and I{x: 71(N)(X) - O}l is a rate 2 
random walk on {0,1,..., N} starting at 1 with absorption at 0 and N. So if 
a5(N) is the time it takes such a random walk to get absorbed, then 

p[a(N) < t] = NP[-(N) < t, absorption at N], 

which is the same as (7.2), since the walk hits N before 0 with probability 1/N. 
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