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Abstract. We study properties of multiple random walks on a graph under var-
ious assumptions of interaction between the particles. To give precise results,
we make our analysis for random regular graphs. The cover time of a random
walk on a random r-regular graph was studied in [6], where it was shown with
high probability (whp), that for r ≥ 3 the cover time is asymptotic to θrn ln n,
where θr = (r − 1)/(r − 2). In this paper we prove the following (whp) results.
For k independent walks on a random regular graph G, the cover time CG(k)
is asymptotic to CG/k, where CG is the cover time of a single walk. For most
starting positions, the expected number of steps before any of the walks meet is
θrn/

(
k
2

)
. If the walks can communicate when meeting at a vertex, we show that,

for most starting positions, the expected time for k walks to broadcast a single
piece of information to each other is asymptotic to 2θrn(ln k)/k, as k, n → ∞.

We also establish properties of walks where there are two types of particles,
predator and prey, or where particles interact when they meet at a vertex by coa-
lescing, or by annihilating each other. For example, the expected extinction time
of k explosive particles (k even) tends to (2 ln 2)θrn as k → ∞.

The case of n coalescing particles, where one particle is initially located at
each vertex, corresponds to a voter model defined as follows: Initially each vertex
has a distinct opinion, and at each step each vertex changes its opinion to that of
a random neighbour. The expected time for a unique opinion to emerge is the
expected time for all the particles to coalesce, which is asymptotic to 2θrn.

Combining results from the predator-prey and multiple random walk models
allows us to compare expected detection time in the following cops and robbers
scenarios: both the predator and the prey move randomly, the prey moves ran-
domly and the predators stay fixed, the predators move randomly and the prey
stays fixed. In all cases, with k predators and � prey the expected detection time
is θrH�n/k, where H� is the �-th harmonic number.
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1 Introduction

A random walk is a simple process in which particles or messages move randomly
from vertex to vertex in a graph. Random walks are an established method of graph ex-
ploration and connectivity testing with limited memory. If we consider the case where
several random walks occur simultaneously, many questions and different types of ap-
plication arise: In graph exploration, to what extent do the multiple random walks speed
up the process? If the walks can interact how effective is communication, such as broad-
casting, between the walks? If there are two different types of particles making walks,
then we can model predator-prey processes (cops and robbers). In the case where each
vertex of the graph initiates a random walk, there are applications in distributed data
collection, gossiping and voting.

In this paper, we study properties of multiple random walks on a graph under various
assumptions of interaction between the particles. To give detailed results for comparison
purposes, we make the analysis for random regular graphs. The technique used is not
specific to random graphs, nor to regular graphs. It can be applied to many graphs with
at least reasonable edge expansion, and whose local edge structure around vertices has
enough symmetry to be describable in a precise sense.

For brevity we restrict our proofs to random r-regular graphs, r ≥ 3. Our results
also apply to many non-random regular graphs e.g. Lubotsky-Phillips-Sarnak type ex-
panders and, with minor alterations, to many regular graphs where r → ∞ slowly, e.g.
the hypercube on n = 2r vertices. In the case where r → ∞, the parameter θr used
throughout this paper becomes 1. To make our analysis, we reduce the multiple random
walks to a single random walk on a suitably defined product graph, to which we ap-
ply the technique of [6]. The main difficulty is to analyze the structure of the product
graph, in particular the pair-wise interaction of the walks. Once established, the reduc-
tion approach allows us to address a wide range of problems, some of which we now
describe.

Suppose there are k ≥ 1 particles, each making a simple random walk on a graph G.
Essentially there are two possibilities, either the particles are oblivious of each other,
or can interact on meeting. Oblivious particles act independently of each other, with
no interaction on meeting. Interactive particles, can interact directly in some way on
meeting. For example they may exchange information, coalesce, reproduce, destroy
each other. We assume that interaction occurs only when meeting at a vertex, and that
the random walks made by the particles are otherwise independent.

The paper gives precise results for the following topics on random regular graphs G:

1. Multiple walks. For k particles walking independently, we establish the cover time
CG(k) of G.

2. Talkative particles. For k particles walking independently, which communicate on
meeting, we give the expected time to broadcast a message.

3. Predator-Prey. For k predator and � prey particles walking independently, we give
the expected time to extinction of the prey particles, when predators eat prey parti-
cles on meeting.

4. Annihilating particles. For k = 2� particles walking independently, which destroy
each other (pairwise) on meeting, we give the expected time to extinction.
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5. Coalescing particles. For k particles walking independently, which coalesce on
meeting, we give the expected time to coalesce to a single particle. In the case
where a walk starts at each vertex, we extend the analysis to a distributed model of
voting, the Voter model.

The motivation for these models comes from many sources, and we give a brief
introduction. A further discussion, with detailed references is given in the appropriate
sections below. The formal definitions of the random variables above can be largely
found in [2], Chapter 14.

Using random walks to test graph connectivity is an established approach, and it is
natural to try to speed this up by parallel searching. Similarly, properties of commu-
nication between particles moving in a network, such as broadcasting and gossiping,
are natural questions. In this context, the predator-prey model could represent interac-
tion between server and client particles, where each client needs to attach to a server.
Combining results from the predator-prey and multiple random walk models allows us
to compare expected detection time for the following scenarios: both the predator and
the prey move, the prey moves and the predators stay fixed, the predators move and the
prey stays fixed. An application of this, is with the predators as cops and the prey as
robbers.

Coalescing and annihilating particle systems are part of the classical theory of in-
teracting particles; and our paper makes a new contribution to this area. A system of
coalescing particles where initially one particle is located at each vertex, is dual to an-
other classical problem, the voter model, which is defined as follows: Initially each
vertex has a distinct opinion, and at each step each vertex changes its opinion to that
of a random neighbour. It can be shown that the distribution of time taken for a unique
opinion to emerge, is the same as the distribution of time for all the particles to coalesce.
By establishing the expected coalescence time, we obtain the expected time to complete
voting in the voter model.

Most known results for interacting particle systems are for the infinite d-dimensional
grid Zd (see e.g. Liggett [14]). As far as we know, the results presented here are the first
which give precise answers for finite graphs, especially for the Voter model (Theorem
8). For an informative discussion on models of interacting particle systems see Chapter
14 of Aldous and Fill [2].

If one step of a random walk corresponds to a vertex forwarding a message to a
random neighbour, and vertices combine messages they receive, the coalescing particle
system gives the time taken to combine all messages. Another application is to calculate
the average value of a vertex based function f(v), v ∈ V ; for example temperature.
To do this each vertex initiates a message, and the messages then perform a coalescing
random walk. The voter model allows the distributed nomination of a central vertex,
to e.g. relay messages. This can be used to implement the leader election problem in a
distributed network.

Results: Oblivious particles

A standard measure of efficiency of graph exploration by a single random walk, is the
cover time, which is defined as follows: Let G = (V, E) be a connected graph, with
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|V | = n vertices and |E| = m edges. For a given starting vertex v ∈ V let Cv be the
expected time taken for a simple random walk to visit every vertex of G. The vertex
cover time CG is defined as CG = maxv∈V Cv . The (vertex) cover time of connected
graphs has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton,
Lovász and Rackoff [3] that CG ≤ 2m(n − 1). It was shown by Feige [10], [11],
that for any connected graph G, the cover time satisfies (1 − o(1))n ln n ≤ CG ≤
(1 + o(1)) 4

27n3.
For many classes of graphs the cover time can be found precisely. For random regular

graphs, the following result was proved in [6].

Theorem 1. Let Gr denote the space of r-regular graphs with vertex set V =
{1, 2, . . . , n} and the uniform measure. Let r ≥ 3 be constant, and let θr = r−1

r−2 .
If G is chosen randomly from Gr, then whp

CG ∼ θrn ln n.

The results given are asymptotic in n, the size of the vertex set. Thus An ∼ Bn means
that limn→∞ An/Bn = 1, and whp (with high probability) means with probability
tending to 1 as n → ∞.

Our first result concerns the speedup in cover time. Let T (k, v1, ..., vk) be the
time to cover all vertices for k independent walks starting at vertices v1, ..., vk.
Define the k-particle cover time Ck(G) in the natural way as Ck(G) =
maxv1,...,vk

E(T (k, v1, ..., vk)) and define the speedup as Sk = C(G)/Ck(G). That the
speedup can vary considerably depending on the graph structure can be seen from the
following results, which can be easily proved. For the complete graph Kn, the speedup
is k; for Pn, the path of length n the speedup is Θ(ln k).

Improving s-t connectivity testing by using k independent random walks was stud-
ied by Broder, Karlin, Raghavan and Upfal [5]. They proved that for k random walks
starting from (positions sampled from) the stationary distribution, the cover time of
an m edge graph is O((m2 ln3 n)/k2). In the case of r-regular graphs, Aldous and
Fill [2] (Chapter 6, Proposition 17) give an upper bound on the cover time of Ck ≤
(25 + o(1))n2 ln2 n/k2. This bound holds for k ≥ 6 lnn.

More recently, the value of Ck(G) was studied by Alon, Avin, Koucký, Kozma,
Lotker and Tuttle [4] for general classes of graphs. The paper gives an example, the
barbell graph, (two cliques joined by a long path) for which the speed-up is exponential
in k provided k ≥ 20 lnn.

The paper [4] found that for expanders the speedup was Ω(k) for k ≤ n particles.
The class of r-regular graphs we consider are expanders. For these graphs, comparing
Theorem 2 with Theorem 1, we see that CG(k) ∼ CG/k, i.e. the asymptotic speedup
is exactly linear.

Theorem 2 Multiple particles walking independently
Let r ≥ 3 be constant. Let G be chosen randomly from Gr, then whp and independently
of the initial positions of the particles:

(i) for k = o(n/ ln2 n) the k-particle cover time CG(k) satisfies

CG(k) ∼ θr

k
n lnn,



Multiple Random Walks and Interacting Particle Systems 403

(ii) for any k, CG(k) = O
(

n
k ln n + lnn

)
.

Suppose we distinguish two types of particles, mobile, and fixed; and that mobile par-
ticles are predators and the fixed particles are prey (or vice versa). An application of
the methods used in Theorem 2 give the following result. For comparison with the case
where both predator and prey move, we have included the result of Theorem 5 below,
for the predator-prey model. The moral of the story is that as long as at least one particle
type moves, the expected detection time is the same.

Theorem 3 Comparison of search models
Let k, � ≤ nε for a sufficiently small positive constant ε.

(i) Suppose there are k mobile predator particles walking randomly, and � prey parti-
cles fixed at randomly chosen vertices of the graph. Let E(Fk,�,i) be the expected
detection time of all prey particles.

(ii) Suppose there are � mobile prey particles walking randomly, and k predator parti-
cles fixed at randomly chosen vertices of the graph. Let E(Fk,�,ii) be the expected
detection time of all prey particles.

Let E(Dk,�) be the expected extinction time of � mobile prey using k mobile predators,
as given by Theorem 5. Then whp, where H� is the �-th harmonic number,

E(Fk,�,i) ∼ E(Fk,�,ii) ∼ E(Dk,�) ∼ θrH�

k
n.

Results: Interacting particles

Consider a pair of random walks, starting at vertices u and v. Let M(u, v) be the number
of steps before the walks first meet at a vertex. Clearly if u = v, then M(u, v) = 0.
We say the walks are in general position, if the starting vertices of the walks are not
too near. For our definition of general position (v1, v2, ..., vk), we choose a pairwise
separation d(vi, vj) ≥ ω = ω(k, n) between particles, where

ω(k, n) = Ω(ln lnn + ln k). (1)

For the results given in this section, we assume that r ≥ 3 is constant, that G is
chosen randomly from Gr, and that the results hold whp over our choice of G.

We first consider problems of passing information between particles. We assume that
particles can only communicate when they meet at a vertex. We refer to such particles
as agents, to distinguish them from non-communicating particles. If initially one agent
has a message it wants to pass to all the others, we refer to this process as broadcasting
(among the agents).

Theorem 4. Broadcast time
Let k ≤ nε for a sufficiently small positive constant ε. Suppose k agents make ran-
dom walks starting in general position. Let Bk be the time taken for a given agent to
broadcast to all other agents. Then

E(Bk) ∼ 2θr

k
Hk−1n,

where Hk is the k-th harmonic number. Thus when k → ∞, E(Bk) ∼ 2θr ln k
k n.
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An alternative and less efficient way to pass on a message, is for the originating agent to
tell it directly to all other agents (by meeting directly with all other agents). Compared
to this, broadcasting improves the expected time for everybody to receive the message
by a multiplicative factor of k/2, for large k. To see this, compare E(Bk) of Theorem 4,
with E(D1,k−1) of Theorem 5 below. Meeting directly with all other agents corresponds
to a predator-prey process with one predator (the broadcaster) and k − 1 prey.

Our next results are for particles which interact in a far from benign manner. One
variant of interacting particles is the predator-prey model, in which both types of parti-
cles make independent random walks. If a predator encounters prey on a vertex it eats
them.

Theorem 5. Predator-prey
Let k, � ≤ nε for a sufficiently small positive constant ε. Suppose k predator and � prey
particles make random walks, starting in general position. Let Dk,� be the extinction
time of the prey. Then

E(Dk,�) ∼ θrH�

k
n.

A variant of predator-prey is interacting sticky particles, in which all particles are preda-
torial, and only one particle survives an encounter.

Theorem 6. Coalescence time: sticky particles
Let k ≤ nε for a sufficiently small positive constant ε. Let Sk be the time to coalesce,
when there are originally k sticky particles walking randomly, starting from general
position. Then,

E(Sk) ∼ 2θrn(k − 1)/k,

so E(Sk) ∼ 2θrn, if k → ∞.

As a twist on predator-prey, we consider “explosive” particles which destroy each other
(pairwise) on meeting at a vertex (that is, if two meet, then both are destroyed, but if,
say, five meet, then two pairs are destroyed and one particle survives).

Theorem 7. Extinction time: explosive particles.
Let k ≤ nε for a sufficiently small positive constant ε. Suppose there are k = 2�
explosive particles walking randomly, starting in general position, and that particles
destroy each other pairwise on meeting at a vertex. Let Dk be the time to extinction.
Then

E(Dk) ∼ 2θrn(H2� − H�),

so E(Dk) ∼ 2θr(ln 2)n, if k → ∞.

The proofs of Theorems 4-7 are given in Section 5.
Finally we consider the voter model. In this model, each vertex initially has a distinct

opinion. At each time step, each vertex i contacts a random neighbour j, and changes
its opinion to the opinion held by j. The number of opinions is non-increasing at each
step. Let Cvm be the number of steps needed for a unique opinion to emerge in the voter
model and let Ccrw be the number of steps to complete a coalescing random walk when
one particle starts at each vertex. By a duality argument these random variables have
the same expected value.
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Theorem 8. Voter model whp for random r-regular graphs,

ECvm = ECcrw ∼ 2θrn.

Methodology. For oblivious particles, we use the techniques and results of [6] and [8]
to establish the probability that a vertex is unvisited by any of the walks at a given time
t. Let T be a suitably large mixing time. Provided the graph is typical (Section 2) and
the technical conditions of Lemma 2 are met, then the probability that a vertex v is
unvisited at steps T, ..., t tends to (1 − πv/Rv)t. Here π is the stationary distribution
and Rv is the number of returns to v during T by a walk starting at v. The value Rv is
a property of the structure of the graph around vertex v. For most vertices of a typical
graph Rv ∼ θr, which explains the origin of this quantity.

In [6] a technique, vertex contraction, was used to estimate the probability that the
random walk had not visited a given set of vertices. For interacting particles, we use
this technique to derive the probability that a walk on a suitably defined product graph
H has not visited the diagonal (set of vertices v = (v1, ..., vk) with repeated vertex
entries vi) at a given time t. Basically we contract the diagonal to a single vertex, γ, and
analyze the walk in the contracted graph Γ .

Proof of Theorems. Because of space restrictions, we only give results and ideas of
proofs in this extended abstract. Full proofs of the theorems of this paper are in [9].

2 Typical r-Regular Graphs

We say an r-regular graph G is typical if it has the properties P1-P4 listed below: Let
ε1 > 0 be a sufficiently small constant. Let a cycle C be small if |C| ≤ L1, where

L1 = �ε1 logr n	. (2)

P1. G is connected, and not bipartite.
P2. The second eigenvalue of the adjacency matrix of G is at most 2

√
r − 1+ ε, where

ε > 0 is an arbitrarily small constant.
P3. There are at most n2ε1 vertices on small cycles.
P4. No pair of cycles C1, C2 with |C1|, |C2| ≤ 100L1 are within distance 100L1 of

each other.

The results of this paper are valid for any typical r-regular graph G, and indeed most
r-regular graphs have this property.

Theorem 9. Let G′
r ⊆ Gr be the set of typical r-regular graphs. Then |G′| ∼ |Gr|.

P2 is a deep result of Friedman [13]. The other properties are easy to check. Note that
P3 implies that most vertices of a typical r-regular graph are tree-like.

3 Estimating First Visit Probabilities

3.1 Convergence of the Random Walk

Let G be a connected graph with n vertices and m edges. For random walk Wu starting
at a vertex u of G, let Wu(t) be the vertex reached at step t. Let P = P (G) be the matrix
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of transition probabilities of the walk and let P
(t)
u (v) = Pr(Wu(t) = v). Assuming G

is not bipartite, the random walk Wu on G is ergodic with stationary distribution π.
Here π(v) = d(v)/(2m), where d(v) the degree of vertex v. We often write π(v) as πv .

Let the eigenvalues of P (G) be λ0 = 1 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −1, and let
λmax = max(λ1, |λn−1|). The rate of convergence of the walk is given by

|P (t)
u (x) − πx| ≤ (πx/πu)1/2λt

max. (3)

For a proof of this, see for example, Lovasz [15].
In this paper we consider the joint convergence of k independent random walks

on a graph G = (VG, EG). It is convenient to use the following notation. Let Hk =
(VH , EH) have vertex set VH = V k and edge set EH = Ek. If S ⊆ VH , then Γ (S) is
obtained from H by contracting S to a single vertex γ(S). All edges, including loops
are retained. Thus dΓ (γ) = dH(S), where dF denotes vertex degree in graph F . More-
over Γ and H have the same total degree (nr)k , and the degree of any vertex of Γ ,
except γ, is rk .

Let k ≥ 1 be fixed, and let H = Hk. For F = G, H, Γ let Wu,F be a random walk
starting at u ∈ VF . Thus Wu,G is a single random walk, and Wu,H corresponds to k
independent walks in G.

Lemma 1. Let G be typical. Let F = G, H, Γ . Let S be such that dH(S) ≤ k2nk−1rk .
Let TF be such that, for graph F = (VF , EF ), and t ≥ TF , the walk Wu,F satisfies

max
x∈VF

|P (t)
u (x) − πx| ≤ 1

n3
,

for any u ∈ VF . Then for k ≤ n,

TG = O(ln n), TH = O(ln n) and TΓ = O(k ln n).

3.2 First Visit Time Lemma: Single Vertex v

Considering a walk Wv , starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, .... Let

RT (z) =
T−1∑

j=0

rjz
j, (4)

generate returns during steps t = 0, 1, ..., T1. Our definition of return includes r0 = 1.
The following lemma should be viewed in the context that G is an n vertex graph

which is part of a sequence of graphs with n growing to infinity. For a proof see [8].

Lemma 2. Let T be a mixing time such that

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3.

Let RT (z) be given by (4), let Rv = RT (1), and let

pv =
πv

Rv(1 + O(Tπv))
. (5)

Suppose the following conditions hold.
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(a) For some constant 0 < θ < 1, we have min|z|≤1+λ |RT (z)| ≥ θ, where λ = 1
KT

for some sufficiently large constant K .
(b) T 2πv = o(1) and Tπv = Ω(n−2).

Let v be a (possibly contracted) vertex, and for t ≥ T , let At(v) be the event that Wu

does not visit v during steps T, T + 1, . . . , t. Then

Pr(At(v)) =
(1 + O(Tπv))

(1 + (1 + O(Tπv))πv/Rv)
t + o(Te−t/KT ).

4 Interacting Particles: Applying the First Visit Time Lemma

Recall the definition of Hk consisting of k copies of G, and let S = {(v1, ..., vk) : at
least two vi are the same}. The particles making random walks are at the components of
the vector corresponding to the vertex in question. Thus S is the set of particle positions
in which at least two particles coincide at a given step. As before, let γ(S) be the
contraction of S to a single vertex, and let Γ (S) be Hk with S contracted.

In order to usefully apply Lemma 2, and estimate the first visit probability of γ (and
hence S), we need to establish three things.

(i) The value of Rγ , the expected number of returns to the diagonal S of Hk for k
particles, and the value of π(γ), the stationary distribution of γ in Γ .

(ii) The conditions of Lemma 2 hold with respect to the vertex γ of the graph Γ .
(iii) The probability that any particles meet during the mixing time TΓ .

These points are formally summarized in Lemmas 3-4 below.

Lemma 3. For typical graphs and k particles, the expected number of returns to γ in
TΓ steps is

Rγ(S) = θr + O

(
k2

nΩ(1)

)
. (6)

If k ≤ nε for a small constant ε, then Rγ(S) ∼ θr.

Lemma 4. If k ≤ nε then the conditions of Lemma 2 hold with respect to the vertex γ
of a typical graph Γ .

From (5) with v = γ, and Lemma 3 we have

pγ =
πγ

θr(1 + O(n−Ω(1)))
.

It follows from [9] that the value of πγ corresponding to a meeting among k particles
is πγ = (1 + o(1))

(
k
2

)
/n, and for a meeting between a given set of s particles and

another set of k particles is πγ = (1 + o(1))sk/n. Applying this to Lemma 2 we have
the following theorem.
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Theorem 10. Let Ak(t) be the event that a first meeting among the k particles after

the mixing time TΓ , occurs after step t. Let pk = (k
2)

θrn (1 + O(n−Ω(1))). Then

Pr(Ak(t)) = (1 + o(1))(1 − pk)t + O(TΓ e−t/2KTΓ ).

Let Bs,k(t) be the event that a first meeting between a given set of s particles and
another set of k particles after the mixing time TΓ , occurs after step t. Let qsk =
sk
θrn (1 + O(n−Ω(1))). Then

Pr(Bs,k(t)) = (1 + o(1))(1 − qsk)t + O(TΓ e−t/2KTΓ ).

By an occupied vertex, we mean a vertex visited by at least one particle at that time
step. The next lemma concerns what happens during the first mixing time, when the
particles start from general position, and also the separation of the occupied vertices
when a meeting occurs.

Lemma 5. For typical graphs G and k ≤ nε particles,
(i) Suppose two (or more) particles meet at time t > TΓ . Let pL be the probability that
the minimum separation between some pair of occupied vertices is less than L. Then
pL = O(k2rL/n).
(ii) Suppose the particles start walking on G with minimum separation at least
α(max {ln lnn, ln k}). Then, for a sufficiently large constant α,

Pr(Some pair of particles meet during TΓ ) = o(1).

From Lemma 5, we see that whp particles starting from general position do not meet
during the mixing time TΓ . When some set of particles do coincide after the mixing
time, the remaining particles are in general position whp.

Corollary 1. Let Mk (resp. Ms,k) be the time at which a first meeting of the particles
occurs, then E(Mk) = (1 + o(1))/pk (resp. E(Ms,k) = (1 + o(1))/qs,k).

This follows from E(Mk) =
∑

t≥T Pr(Ak(t)) and pkTΓ = o(1). �

5 Results for Interacting Particles

After an encounter, we allow the remaining particles time T = TG to re-mix . In any
of Theorem 4-7 the total number of particle interactions k2. Recall that TΓ = O(kT ).
From Lemma 5, the event that some particles meet during one of these kTΓ mixing
times has probability O(k3T/nΩ(1)) = o(1) (by assumption).

The proof of Theorem 4-7 will now follow from Lemma 5 and Corollary 1.

5.1 Broadcasting, Predator-Prey: Theorems 4, 5

Recall that Dk,� is the extinction time of the � prey using k predators. Thus

E(Dk,�) = O(k�T ) +
�∑

s=1

E(Ms,k) ∼ nθr

�∑

s=1

1
sk

=
nθr

k
H�,
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where H� is the �-th harmonic number. Similarly, the time Bk, for a given agent to
broadcast to all other agents is

∑k−1
s=1 Ms,k−s, and thus

E(Bk) = O(k�T ) + nθr

k−1∑

s=1

(1 + o(1))
s(k − s)

∼ nθr

k−1∑

s=1

1
s(k − s)

=
2nθr

k
Hk−1.

5.2 Expected Time to Coalescence: Theorem 6

Let Sk be the time for all the particles to coalesce, when there are originally k sticky
particles walking in the graph. Then,

E(Sk) = O(kT ) +
k∑

s=1

(1 + o(1))
ps

∼ nθr

k∑

s=2

2
s(s − 1)

= 2θrn
k − 1

k
.

We see that for k → ∞, E(Sk) ∼ 2θrn.

5.3 Expected Time to Extinction: Explosive Particles: Theorem 7

Let Dk be the time to extinction, when there are originally k = 2� explosive particles
walking in the graph. Then

E(Dk) = O(kT ) +
�∑

s=1

(1 + o(1))
p2s

∼ nθr

�∑

s=1

2
2s(2s− 1)

= 2θrn(H2� − H�).

Noting that lim�→∞(H2� − H�) = ln 2, we have E(Dk) ∼ 2θr(ln 2) n, for k → ∞.
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