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Abstract

We show that if a connected graph with n nodes has
conductance φ then rumour spreading, also known as
randomized broadcast, successfully broadcasts a mes-
sage within O(log4 n/φ6) many steps, with high proba-
bility, using the PUSH-PULL strategy. An interesting
feature of our approach is that it draws a connection be-
tween rumour spreading and the spectral sparsification
procedure of Spielman and Teng [23].

1 Introduction

Rumour spreading, also known as randomized broadcast
or randomized gossip (all terms that will be used as
synonyms throughout the paper), refers to the following
distributed algorithm. Starting with one source node
with a message, the protocol proceeds in a sequence
of synchronous rounds with the goal of broadcasting
the message, i.e. to deliver it to every node in the
network. At round t ≥ 0, every node that knows the
message selects a neighbour uniformly at random to
which the message is forwarded. This is the so-called
PUSH strategy. The PULL variant is specular. At round
t ≥ 0 every node that does not yet have the message
selects a neighbour uniformly at random and asks for
the information, which is transferred provided that the
queried neighbour knows it. Finally, the PUSH-PULL
strategy is a combination of both. In round t ≥ 0,
each node selects a random neighbour to perform a
PUSH if it has the information or a PULL in the opposite
case. These three strategies have been introduced by [7].
One of the most studied questions for rumour spreading
concerns its completion time: how many rounds will it
take for one of the above strategies to disseminate the
information to all nodes in the graph, assuming a worst-
case source? We will say that rumour spreading is fast
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if its completion time is poly-logarithmic in the size of
the network regardless of the source, and that it is slow
otherwise.

Randomized broadcast has been intensely investi-
gated (see the related-work section). Our long term
goal is to characterize a set of necessary and/or suffi-
cient conditions for rumour spreading to be fast in a
given network. In this work, we provide a very general
sufficient condition– high conductance. Our main moti-
vation comes from the study of social networks. Loosely
stated, we are looking after a theorem of the form “Ru-
mour spreading is fast in social networks”. Our result is
a good step in this direction because there are reasons
to believe that social networks have high conductance.
This is certainly the case for preferential attachment
models such as that of [18]. More importantly, there
is some empirical evidence that this might be the case
for real social networks; in particular the authors of [17]
observe how in many different social networks there ex-
ist only cuts of small (logarithmic) size having small
(inversely logarithmic) conductance – all other cuts ap-
pear to have larger conductance. That is, the conduc-
tance of the social networks they analyze is larger than
a quantity seemingly proportional to an inverse loga-
rithm. Knowing that rumour spreading is fast for so-
cial networks would have several implications. First,
recently it has been realized that communication net-
works, especially ad-hoc and mobile, have a social struc-
ture. The advent of pervasive computing is likely to re-
inforce this trend. Rumour spreading is also a simplified
form of viral mechanism. By understanding it in detail
we might be able to say something about more com-
plex and realistic epidemic processes, with implications
that might go beyond the understanding of information
dissemination in communication networks.

Another relevant context for or work is the relation-
ship between rumour spreading and expansion proper-
ties that, intuitively, should ensure fast dissemination.

Perhaps surprisingly, in the case of edge expansion
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there are classes of graphs for which the protocol is slow
( see [5] for more details), while the problem remains
open for vertex expansion. In this paper we show the
following:

Theorem 1.1. Given any network G and any source
node, PUSH-PULL broadcasts the message within
O(log4 n/φ6(G)) many rounds, where n is the number of
nodes of the input graph G and φ(G) is its conductance.

Thus, if the conductance is high enough, say φ−1 =
O(log n) (as it has been observed to be in real social
networks [17]), then, according to our terminology,
rumour spreading is fast.

We notice that the use of PUSH-PULL is necessary, as
there exist high conductance graphs for which neither
the PUSH, nor the PULL, strategies are fast on their own.
Examples can be found in [5] where it is shown that
in the classical preferential attachment model PUSH and
PULL by themselves are slow. Although it is not known if
preferential attachment graphs have high conductance,
the construction of [5] also applies to the “almost”
preferential attachment model of [18], which is known
to have high conductance.

In terms of message complexity, we observe first
that it has been determined precisely only for very
special classes of graphs (cliques [15] and Erdös-Rényi
random graphs [11]). Apart from this, given the
generality of our class, it seems hard to improve the
trivial upper bound on the number of messages– running
time times number of nodes. For instance consider
the “lollipop graph”. Fix ω(n−1) < φ < o(log−1 n),
and suppose to have a path of length φ−1 connected
to a clique of size n − φ−1 = Θ(n). This graph has
conductance ≈ φ. Let the source be any node in
the clique. After Θ(log n) rounds each node in the
clique will have the information. Further it will take
at least φ−1 steps for the information to be sent to the
each node in the path. So, at least n − φ−1 = Θ(n)
messages are pushed (by the nodes in the clique) in
each round, for at least φ−1 − Θ(log n) = Θ(φ−1)
rounds. Thus, the total number of messages sent will
be Ω(n · φ−1). Observing that the running time is
Θ(φ−1 + log n) = Θ(φ−1), we have that the running
time times n is (asymptotically) less than or equal to
the number of transmitted messages.

We also note that one cannot give fault-tolerant
guarantees (that is, the ability of the protocol to resist to
node and/or edge deletions) based only on conductance.
A star has high conductance, but failure of the central
node destroys connectivity.

As remarked, our result is based upon a connec-
tion with the spectral sparsification procedure of [23].
Roughly, the connection is as follows. The spectral spar-

sification procedure (henceforth ST) is a sampling pro-
cedure such that, given a graph G, it selects each edge
uv independently with probability

(1.1) puv := min
{

1,
δ

min{deg(u),deg(v)}

}
where deg(u) denotes the degree of a node u and

(1.2) δ = Θ
(

log2 n

φ4

)
.

Spielman and Teng show that the eigenvalue spectrum
of the sampled graph ST(G) is, with high probability,
a good approximation to that of G. In turn, this
implies that φ(ST(G)) ≥ Ω(φ2(G)) and that ST(G) is
connected (otherwise the conductance would be zero).
The first thing we notice is that ST expands: after
having applied ST, for each subset of vertices S of at
most half the total volume of G, the total volume of the
set of vertices reachable from S via edges sampled by
ST is at least a constant fraction of the volume of S (the
volume of a set of vertices is the sum of their degrees).
Intuitively, if we were to use ST to send messages across
the edges it samples, we would quickly flood the entire
graph. Allowing for some lack of precision for sake of
clarity, the second main component of our approach
is that rumour spreading stochastically dominates ST,
even if we run it for poly-logarithmically many rounds.
That is to say, the probability that an edge is used by
rumour spreading to pass the message is greater than
that of being selected by ST.

In a broad sense our work draws a connection be-
tween the theory of spectral sparsification and the speed
with which diffusion processes make progress in a net-
work. This could potentially have deeper ramifications
beyond the present work and seems to be worth explor-
ing. For instance, recently in [1, 22] introduced a more
efficient sparsification technique that is able to approx-
imate the spectrum using only O(n log n), and O(n),
edges, respectively. Extending our approach to the new
sampler appears challenging, but not without hope. The
consequence would be a sharper bound on the diffusion
speed. Of great interest would also be extending the ap-
proach to other diffusion processes, such as averaging.
Finally, we remark that an outstanding open problem
in this area is whether vertex expansion implies that
rumour spreading is fast.

2 Related work

The literature on the gossip protocol and social net-
works is huge and we confine ourselves to what appears
to be more relevant to the present work.

Clearly, at least diameter-many rounds are needed
for the gossip protocol to reach all nodes. It has been
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shown that O(n log n) rounds are always sufficient for
each connected graph of n nodes [12]. The problem
has been studied on a number of graph classes, such as
hypercubes, bounded-degree graphs, cliques and Erdös-
Rényi random graphs (see [12, 14, 20]). Recently, there
has been a lot of work on “quasi-regular” expanders
(i.e., expander graphs for which the ratio between the
maximum and minimum degree is constant) — it has
been shown in different settings [2, 8, 9, 13, 21] that
O(log n) rounds are sufficient for the rumour to be
spread throughout the graph. See also [16, 19]. Our
work can be seen as an extension of these studies to
graphs of arbitrary degree distribution. Observe that
many real world graphs (e.g., facebook, Internet, etc.)
have a very skewed degree distribution — that is, the
ratio between the maximum and the minimum degree
is very high. In most social networks’ graph models the
ratio between the maximum and the minimum degree
can be shown to be polynomial in the graph order.

Mihail et al. [18] study the edge expansion and
the conductance of graphs that are very similar to
preferential attachment (PA) graphs. We shall refer
to these as “almost” PA-graphs. They show that
edge expansion and conductance are constant in these
graphs.

Concerning PA graphs, the work of [5] shows that
rumour spreading is fast in those networks. Although
PA networks have high conductance, the present work
does not supersede those results, for there it is shown a
O(log2 n) time bound.

In [3] it is shown that high conductance implies
that non-uniform (over neighbours) rumour spreading
succeeds. By non-uniform we mean that, for every
ordered pair of neighbours i and j, node i will select
j with probability pij for the rumour spreading step (in
general, pij 6= pji). This results does not extend to
the case of uniform probabilities studied in this paper.
In our setting (but not in theirs), the existence of a
non uniform distribution that makes rumour spreading
fast is a rather trivial matter. A graph of conductance
φ has diameter bounded by O(φ−1 log n). Thus, in a
synchronous network, it is possible to elect a leader
in O(φ−1 log n) many rounds and set up a BFS tree
originating from it. By assigning probability 1 to the
edge between a node and its parent one has the desired
non uniform probability distribution. Thus, from the
point of view of this paper the existence of non uniform
problem is rather uninteresting.

3 Preliminaries

We introduce notation, definitions, and recall several
facts for later use.

Given a graph G = (V,E), we denote by ST(G) the

graph on the same vertex set ofG whose edges have been
selected by the ST-sparsification algorithm, i.e. with
probability defined by Equation 1.1. We use ST(E) to
denote the edges of ST(G).

In the spectral sparsification setting of [23] the
weight of edge uv, surviving the sparsification proce-
dure, is wuv := p−1

uv .

Notation 3.1. (Weights) The weight of a set of
edges E′ ⊆ E is defined as wG(E′) :=

∑
e∈E′ we.

The weight of a vertex u in a graph G is defined as
wG(v) :=

∑
e3v we. The weight of a set of vertices S is

defined as wG(S) :=
∑
u∈S wG(u).

Given a graph G, the degree of a node u is denoted as
degG(u).

Definition 3.1. (Volume) The volume of a set of
vertices S of a graph G is defined to be

VolG(S) =
∑
v∈S

degG(u).

Definition 3.2. (Volume expansion) Let f be a
randomized process selecting edges in a graph G =
(V,E). Given S ⊆ V , the set f(S) is the union of S
and the set of all vertices u ∈ V − S such that there
exists some v ∈ S and uv ∈ E was selected by f . We
say that f α-expands for S if

VolG(f(S)) ≥ (1 + α) ·VolG(S).

The set of edges across the cut (S, V −S) will be denoted
as ∂G(S)

Definition 3.3. (Conductance) A set of vertices S
in a graph G has conductance φ if

wG(∂G(S)) ≥ φ · wG(S).

The conductance of G is the minimum conductance,
taken over all sets S such that wG(S) ≤ wG(V )/2.

We will make use of a deep result from [23]. Specifically,
it implies that the spectrum of ST(G) is approximately
the same as the one of G. It follows from [4,6] that:

Theorem 3.1. (Spectral Sparsification) There
exists a constant c > 0 such that, with probabil-
ity at least 1 − O(n−6), for all S ⊆ V such that
wG(S) ≤ wG(V )/2, we have

wST (G)(∂ST (G)(S)) ≥ c · φ2(G) · wST (G)(S).

We say that an event occurs with high probability
(whp) if it happens with probability 1− o(1), where the
o(1) term goes to zero as n, the number of vertices, goes
to infinity.
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4 The proof

In this section we will prove Theorem 1.1. Before
plunging into technical details, let us give an overview
of the proof. The first thing we do is to show that ST-
sparsification enjoys volume expansion. That is, there
exists a constant c > 0 such that, for all sets S of volume
at most VolG(V )/2,

(4.3) VolG(ST(S)) > (1 + c · φ2(G)) VolG(S).

The second, more delicate, step in the proof is to show
that rumour spreading (essentially) stochastically domi-
nates ST-sparsification. Assume that S is the set of ver-
tices having the message. If we run PUSH-PULL (hence-
forth PP, which plays the role of f in Definition 3.2)
for T = O(log3 n/φ4) rounds, then VolG(PP(S)) �
VolG(ST(S)), where � denotes stochastic domination.
(Strictly speaking, this is not quite true, for there are
certain events that happen with probability 1 in ST,
and only with probability 1− o(1) with PP.)

Consider then the sequence of sets Si+1 := PP(Si),
and S0 := {u} where u is any vertex. These sets keep
track of the diffusion via PUSH-PULL of the message
originating from u (the process could actually be faster,
in the sense that Si is a subset of the informed nodes
after T · i rounds). Then, for all i,

VolG(Si+1) = VolG(PP(S)) ≥
≥ VolG(ST(S)) > (1 + cφ2(G)) VolG(Si).

The first inequality follows by stochastic domination,
while the second follows from Equation 4.3. Since the
maximum volume is O(n2), we have that Vol(St) >
Vol(G)/2 for t = O(log n/φ2). This means that within
O(T log n/φ2) many rounds we can deliver the message
to a set of nodes having more than half of the network’s
volume. To conclude the argument we use the fact
that PP is specular. If we interchange PUSH with PULL
and viceversa, the same argument “backwards” shows
that once we have St we can reach any other vertex
within O(T log n/φ2) additional many rounds. After
this informal overview, we now proceed to the formal
argument. In what follows there is an underlying graph
G = (V,E). where n := |V (G)|, for which we run ST
and PP.

4.1 Volume expansion of ST-sparsification Our
goal here is to show Equation 4.3. We begin by showing
that the weight of every vertex in ST(G) is concentrated
around its expected value, namely its degree in G.

Lemma 4.1. With probability at least 1 − n−ω(1) over
the space induced by the random ST-sparsification algo-
rithm, for each node v ∈ V (G) we have that

wST (G)(v) = (1± o(1)) degG(v).

Proof. If degG(v) ≤ δ, then wST (G)(v) is a constant
random variable with value degG(v). If we assume
the opposite we have that E[wST (G)(v)] = degG(v), by
definition of ST-sparsification. Recalling the definition
of δ (Equation 1.2), let X = wST (G)(v)δ/deg(v). Then,
E[X] = δ. By the Chernoff bound,

Pr[|X − E[X]| ≥ εE[X]] ≤

≤ 2 exp
(
−ε

2

3
E[X]

)
= 2 exp

(
−ε

2

3
δ

)
.

Since δ = Θ
(

log2 n
φ4

)
, if we pick ε = ω(φ2/

√
log n), the

claim follows. �

Corollary 4.1. Let S ⊆ V be such that VolG(S) ≤
VolG(V )/2. With probability at least 1 − n−ω(1) over
the space induced by the random ST-sparsification algo-
rithm, we have that

wST (G)(S) = (1± o(1)) VolG(S).

Theorem 3.1 states that ST-sparsification enjoys weight
expansion. By means of Lemma 4.1 and Corollary 4.1
we can translate this property into volume expansion.
Recall that ST(S) is S union the vertices reachable from
S via edges sampled by ST.

Lemma 4.2. (Volume expansion of ST) There ex-
ists a constant c such that for each fixed S ⊆ V having
volume at most VolG(V )/2, with high probability

VolG(ST(S)) > (1 + c · φ2(G)) VolG(S).

Proof. By Theorem 3.1, wST (G)(∂ST (G)(S)) ≥ c ·φ2(G) ·
wST (G)(S). Clearly,

wST (G)(ST(S)) ≥ wST (G)(∂ST (G)(S)).

By Corollary 4.1 we have that VolG(ST(S)) =
wST (G)(ST(S))(1±o(1)) and VolG(S) = wST (G)(S)(1±
o(1)). The constant c in Theorem 3.1 and the error
terms in Corollary 4.1 can be chosen in such a way that
VolG(ST(S)) > (1 + c′ ·φ2(G)) VolG(S) for some c′ > 0.
The claim follows. �

We end this section by recording a simple monotonicity
property stating that if a process enjoys volume expan-
sion, then by adding edges expansion continues to hold.

Lemma 4.3. Let f and g be a randomized processes that
select each edge e in G independently with probability pe
and p′e, respectively, with p′e ≥ pe. Then, for all t > 0
and S,

Pr(VolG(g(S)) > t) ≥ Pr(VolG(f(S)) > t).

Proof. The claim follows from a straightforward cou-
pling, and by the fact that if A ⊆ B then Vol(A) ≤
Vol(B). �
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5 The road from ST-sparsification to Rumour
Spreading

The goal of this section is to show that PPstochastically
dominates ST. As stated the claim is not quite true
and the kind of stochastic domination we will show is
slightly different. Let us begin by mentioning what kind
of complications can arise in proving a statement like
this.

A serious issue is represented by the massive de-
pendencies that are exhibited by PP. To tackle this
we introduce a series of intermediate steps, by defin-
ing a series of processes that bring us from ST to PP.
We will relax somewhat PP and ST by introducing
two processes PPW and DST to be defined precisely
later. In brief, PPW is the same as PP except that
vertices select neighbours without replacement. DST
differs from ST by the fact that edges are “activated”
(we will come to this later) by both endpoints. Again,
slightly simplifying a more complex picture for the sake
of clarity, the main flow of the proof is to show that
ST � DST � PPW � PP, where � denotes stochastic
domination. Let us now develop formally this line of
reasoning.

The first intermediate process is called double ST-
sparsification henceforth (DST) and it is defined as
follows. DST is a process in which vertices select edges
incident on them (similarly to what happens with PP).
With DST each edge e 3 u is activated independently
by u with probability

(5.4) pe := min
{

1,
δ

degG(u)

}
.

An edge e = uv is selected if it is activated by at least one
of its endpoints. Clearly DST � ST and thus it follows
immediately from Lemma 4.3 that DST expands. We
record this fact for later use.

Lemma 5.1. (Volume expansion of DST) There
exists a constant c such that for each fixed S ⊆ V
having volume at most VolG(V )/2, with high probability

VolG(DST(S)) > (1 + c · φ2(G)) VolG(S).

Therefore from now on we can forget about ST and
work only with DST. The next lemma shows that with
high probability after DST-sparsification the degree of
all vertices is O(log2 n/φ2).

Lemma 5.2. Let ξ be the event “with DST no node will
activate more than 2δ edges”. Then,

Pr(ξ) = 1− n−ω(1).

Proof. The only case to consider is deg(v) > 2δ.
Let X = (# of edges activated by v). Then E[X] =

∑
u∈N(v)

δ
deg(v) = δ. Invoking the Chernoff bound we

get (see for instance [10]),

Pr[X ≥ 2E[X]] ≤ 2 exp (−Ω(δ)) ≤ n−ω(1)

for n large enough. �

Remark: For the remainder of the section, when
dealing with DST we will work in the subspace defined
by conditioning on ξ. We will do so without explicitly
conditioning on ξ, for sake of notational simplicity.

The second step to bring PP “closer” to ST is
to replace PP with a slightly different process. This
process is dubbed PP without replacement (henceforth
PPW) and it is defined as follows. If PPW runs for t
rounds, then each vertex u will select min{degG(u), t}
edges incident on itself without replacement (while PP
does it with replacement). The reason to introduce
PPW is that it is much easier to handle than PP.

Notation 5.1. (Time horizons) Given a vertex set
S ⊆ V we will use the notation A := (Au : u ∈ S)
to denote a collection of vertex sets, where each Au is a
subset of the neighbours of u. A vector of integers T =
(tu : u ∈ S) is called a time horizon for S. Furthermore
we will use the notation ‖A‖ := (|Au| : u ∈ S), to
denote the time horizon for S that corresponds to A.

Notation 5.2. (Behaviour of PPW) Let S be a set
of vertices in a graph G and let T be a time hori-
zon for S. PPW(T, S) is the process where every ver-
tex u ∈ S activates a uniformly random subset of
min{degG(u), tu} edges incident on itself, to perform a
PUSH-PULL operation for each of them.

Notice that PPW might specify different cardinalities
for different vertices. This is important for the proofs
to follow.

With this notation we can express the outcome
of DST sampling. Focus on a specific set of vertices
S = (u1, . . . , uk). We know that DST(S) expands with
respect to S and we want to argue that so does PPW.
The crux of the matter are the following two simple
lemmas.

Lemma 5.3. Let u be a vertex in G and t a positive
integer. And let DST(u) and PPW(t, u) denote, respec-
tively, the subset of edges incident on u selected by the
two processes. Then,

Pr(DST(u) = Au ∪ {u} | |Au| = t) =
= Pr(PPW(t, u) = Au ∪ {u}).
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Proof. With DST each vertex activates (and therefore
selects) edges incident on itself with the same proba-
bility. If we condition on the cardinality, all subsets
are equally likely. Therefore, under this conditioning,
DST(u) simply selects a subset of t edges uniformly at
random. But this is precisely what PPW(t, u) does. �

Lemma 5.4. Let S = {v1, . . . , v|S|} be a subset of
vertices of G and T = (t1, . . . , t|S|) a time horizon for
S. Then,

Pr

 |S|∧
i=1

DST(vi) = Avi ∪ {vi}
∣∣∣ ‖A‖ = T

 =

= Pr

 |S|∧
i=1

PPW(ti, vi) = Avi ∪ {vi}

 .

Proof. This follows from Lemma 5.3 and the fact that
under both DST and PPW vertices activate edges
independently. �

In other words, for every realization A of DST there
is a time horizon TA such that the random choices of
PPW are distributed exactly like those of DST. Said
differently, if we condition on the cardinalities of the
choices made by DST, then, for those same cardinalities,
PPW is distributed exactly like DST. To interpret the
next lemma refer to Definition 3.2.

Lemma 5.5. Let T := (2δ, . . . , 2δ). There exists c > 0
such that, for all sets S ⊆ V ,

Pr(PPW(S, T ) (cφ2)-expands for S) ≥
≥ Pr(DST(S) (cφ2)-expands for S) =
= 1− o(1).

Proof. For the first inequality, recall that we are assum-
ing that DST operates under conditioning on ξ. Thus,
by Lemma 5.2 we have that each u ∈ V activates at
most 2δ edges. Therefore T majorizes every time hori-
zon TS for which Lemma 5.4 holds. The last equality is
derived from Lemma 5.2. �

We conclude the series of steps by showing that, given
any set S, PP also expands with high probability.

Lemma 5.6. Consider the PP process. Take any node
v, and an arbitrary time t0. Between time t0 and t1 =
t0 + 9δ · log n, node v activates at least min(2δ, deg(v))
different edges with high probability.

Proof. We split the proof into two cases, deg(v) ≤ 3δ
and deg(v) > 3δ. In the former case, a straightforward
coupon collector argument applies.1.

Otherwise deg(v) > 3δ, PP will either choose > 2δ
different edges during the 9δ rounds, or it will choose at
most≤ 2δ different edges. What is the probability of the
latter event? In each round the probability of choosing
a new edge will be ≥ deg(v)−2δ

deg(v) ≥ 1− 2δ
deg(v) ≥ 1− 2

3 = 1
3 .

But then by Chernoff bound, the probability of this
event is at most n−ω(1). �

To summarize, if PP is run t1 − t0 = O(δ log n)
steps, with high probability every node in ST (S) selects
at least min{degG(u), 2δ} many edges, and therefore
dominates PPW.

6 The speed of PP

In this section, we upper bound the number of steps
required by PP to broadcast a message in the worst
case. The basic idea is that, as we have seen in the
previous section, a PP requires (log3 n/φ4) rounds to
expand out of a set. Suppose the information starts
at vertex v. Since each expansion increases the total
informed volume by a factor of (1 + Ω(φ2)) we have
that after (log4 n/φ6) rounds, the information will have
reached a set of nodes of volume greater than half the
volume of the whole graph. Consider now another node
w. By the symmetry of the PUSH-PULL process, w will be
“told” the information by a set of nodes of volume bigger
than half of the volume of the graph in O(log4 n/φ6)
many rounds. Thus the information will travel from v to
w in O(log4 n/φ6) many rounds, with high probability.

To develop the argument more formally, let us
define a macro-step of PP as 2δ log n consecutive rounds.
We start from a single node v having the information,
S0 = {v}. As we saw, in each macro-step, with
probability ≥ 1 − O(n−6) the volume of the set of
nodes that happen to have the information increases
by a factor 1 + Ω(φ2), as long as the volume of Si is
≤ 1

2 VolG(V ).
Take any node w 6= v. If the information started

at w, in O(log1+Ω(φ2) n) = O
(

1
φ2 log n

)
macro-steps

the information will have reached a set of nodes S =
SO( 1

φ2 logn) of total degree strictly larger than 1
2 VolG(V )

with probability 1 − O(n−6 · logn
φ2 ) ≥ 1 − O(n−2 log n).

Note that the probability that the information, starting
from some node in S, gets sent to w in O( 1

φ2 log n)

1The probability of non-activation in 9δ logn rounds of some

edge will be equal to (1− 1
deg(v)

)9δ logn ≤ (1− 1
3δ

)9δ logn ≤ n−3.

Thus, by union bounding over all its edges, the probability that
event fails to happen is O(n−2).
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steps is greater than or equal to the probability that
w spreads the information to the whole of S (we use
PUSH-PULL, so each edge activation both sends and
receive the information — thus by activating the edges
that got the info from w to S in the reverse order,
we could get the information from each node in S to
w. Note that the probability of the two activation
sequences are exactly the same).

Now take the originator node v, and let it send the
information for O

(
1
φ2 log n

)
macro-rounds (for a total

of O
(

log4 n
φ6

)
many rounds). With high probability,

the information will reach a set of nodes Sv of volume
strictly larger than 1

2 VolG(V ). Take any other node
w, and grow its Sw for O( 1

φ2 log n) rounds with the
aim of letting it grab the information. Again, after
those many rounds, w will have grabbed the information
from a set of volume at least 1

2 VolG(V ) with probability
1 − O(n−2 log n). As the total volume is VolG(V ) the
two sets will intersect — so that w will obtain the
information with probability 1 − O(n−2 log n). Union
bounding over the n nodes, gives us the main result:
with probability ≥ 1 − O(n−1 log n) = 1 − o(1), the
information gets spread to the whole graph in O

(
log4 n
φ6

)
rounds.
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