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A SIMPLE STOCHASTIC EPIDEMIC 

By NORMAN T. J. BAILEY 

Department of Medicine, University of Cambridge 
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1. GENERAL INTRODUCTION 

The mathematical theory of epidemics has usually been confined to the consideration of 
'deterministic' models as, for example, in the work of Kermack & McKendrick (1927 and 
later) and Soper (1929). That is, it has been assumed that, for given numbers of susceptible 
and infectious individuals and given infection and removal rates, a certain definite number of 
fresh cases would arise in a given time. In fact, as is well known, a considerable degree of 
chance enters into the conditions under which fresh infections take place, and it is clear that 
for a more precise analysis we ought to take these statistical fluctuations into account. In 
short, we require 'stochastic' models to supplement existing deterministic ones. 

Bartlett (1949) has emphasized this need and has devoted some discussion to various 
partial attacks already made on the problem. A brief reference has also been made by 
Bartlett (1946, pp. 52-3) to the simple stochastic epidemic process considered in greater 
detail in the present paper. 

In deterministic treatments the total number of cases is a single-valued function of time, 
but in stochastic treatments the single point on the deterministic curve is replaced by a 
probability distribution. The usual deterministic epidemic curve gives the rate of change with 
respect to time of the total number of cases (regarded as continuous), while the most appro- 
priate stochastic analogue is probably the curve of the rate of change with respect to time 
of the stochastic mean. The latter statement needs to be suitably qualified and is discussed 
in greater detail in the following section. In some processes stochastic means are identical 
with deterministic values, but this is not the case in epidemic processes. It is worth remarking 
in passing that the rather unexpected smoothness of observed epidemic curves is most likely 
to be due to the partial ironing out of statistical variations, by summation over finite periods 
of time (e.g. when quoting so many new cases per day or week) and by summation over 
relatively isolated epidemics occurring simultaneously in subgroups of the main population. 

The present note deals with the very simplest case of the spread of a relatively mild in- 
fection, in which none of the infected individuals is removed from circulation by death, 
recovery or isolation. This is admittedly an over-simplification, but, apart from providing 
a possible basis for more extensive investigations, it may well represent the situation with, 
for example, some of the milder infections of the upper respiratory tract. 
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194 A simple stochastic epidemic 

2. THE IMPORTANCE OF STOCHASTIC MEANS IN EPIDEMICS 

It is usual to assume that the probability of a new case occurring in a small interval of time 
is proportional to both the number of susceptible and the number of infectious individuals. 
These assumptions are reasonable for areas small enough for homogeneous mixing to take 
place. This is clearly not so with large areas, for which it is well known that the overall epi- 
demic can often be broken down into smaller epidemics occurring in separate regional sub- 
divisions. These regional epidemics are not necessarily in phase and often interact with each 
other. Taking the process of subdivision a stage further we can consider a single town or 
district. Even here it is obvious that a given infectious individual has not the same chance 
of infecting each inhabitant. He will probably be in close contact with a small number of 
people only, perhaps of the order of 10-50, depending on the nature of his activities. The 
observed epidemic for the whole district will then be built up from epidemics taking place 
in several relatively small groups of associates and acquaintances. Although in practice the 
groups may overlap, we can employ the concept of an effective number of independent groups, 
and it may be possible to assume, as a first approximation, that they are equal in size. 
A typical model would involve a community of, say k independent groups each of size n. 
We can imagine an epidemic started by the simultaneous appearance or introduction of 
k primary cases, one for each group. 

Stochastic means are often not very informative because of the large amount of variation 
associated with them. But in the model suggested, at any given time, the coefficient of 
variation of the total number of cases will be 1/7Vk times the coefficient of variation of any 
one of the groups. Thus the larger the value of k, the more nearly will the curve of the total 
number of cases approach in shape the curve of the stochastic mean for a population of 
size n; and we may expect the overall epidemic curve to approach in shape the curve of the 
rate of change with respect to time of the stochastic mean. In epidemic processes stochastic 
means are not the same as the deterministic values, so that special treatment is required. 

Although the above model is rather over-simplified there is some justification for regarding 
the epidemic curve derived from the stochastic mean as the appropriate stochastic analogue 
corresponding to the classical deterministic epidemic curve. 

3. DETERMINISTIC TREATMENT OF A SIMPLE EPIDEMIC 

Let us consider a community containing n susceptibles into which a single infectious in- 
dividual is introduced. We shall assume that the infection spreads by contact between the 
members of the community, and that it is not sufficiently serious for cases to be withdrawn 
from circulation by isolation or death; also that no case becomes clear of infection during 
the course of the main part of the epidemic. These are wide assumptions but, as already 
suggested, are probably nearly fulfilled with some of the milder infections of the upper 
respiratory tract. 

Let y be the number of susceptibles at time t, and let /5 be the infection rate. Then the 
number of new infections in time dt is ,/y(n - y + 1) dt. If we replace t by fit we shall find that 
our equation is dimensionless so far as the infection rate is concerned. It is easy to see that 
the deterministic differential equation is 

dy = _y(n-y+ 1), (1) dt 

satisfying the initial condition y = n when t = 0. (2) 
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Equation (1) above corresponds to equation (22) given by Bartlett (1946, p. 53). Bartlett's 

main variable is the number of infectious individuals, whereas ours is the number of 
susceptibles, and he presumably starts his process with one infectious individual and n - 1 
susceptibles. 

The solution of (1) and (2) is y = n(n+ l)/{n+e(+19}. (3) 
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Fig. 1. Comparison of deterministic and stochastic epidemic curves for n = 10. 
----- deterministic curve; stochastic curve. 
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Fig. 2. Comparison of deterministic and stochastic epidemic curves for n = 20. 
- --deterministic curve; stochastic curve. 

Thus the deterministic epidemic curve is 

Z dy y~ny+l1) n(n +1)2 e(n+lY t4 dt - {n + e(n+lX }2(4 
The curve reaches a maximum when t = log n/(n + 1), y = J(n + 1) and z = {(n?+ 1)2. It 

is clearly symmetrical about t = log n/ (n +1) 
13-2 
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The epidemic curve given by (4) is plotted for n = 10 and n = 20 in Figs. 1 and 2 respec- 
tively, where the corresponding curves for the stochastic cases are given for comparison. 

Our solution given in (4) does not agree, making due allowance for the change of notation 
and variable, with Bartlett's solution (23). However, as the latter does not seem to satisfy 
the apparent initial conditions, there must be a misprint. 

4. STOCHASTIC TREATMENT OF A SIMPLE EPIDEMIC 

(a) Solution of stochastic differential-difference equations 
Let us use the same notation as in ? 3. Then replacing t by fit as before, it is easy to see that 
on the assumption of homogeneous mixing the probability of one new infection taking place 
in the interval dt is y(n - y + 1) dt. Now suppose that pr(t) is the probability that there are 
r susceptibles still uninfected at time t. Then the usual treatment shows that the epidemic 
process is characterized by the stochastic differential-difference equations: 

dP (t) = (r+ 1) (n-r) pr+1(t)-r(n-r+ 1)Pr(t) (r = 0,1,2,..., (n-1)), cit 

and dPn(t) - npn(t). } 
I have to thank Mr D. G. Kendall for drawing my attention to a paper by Feller (1939). 

Feller's equation (19) is substantially the same as our (5), though it was obtained in a different 
context. Feller gives the solution of sets of equations of this type with generalized coefficients. 
On the right-hand side of our (5) every coefficient appears twice, leading to terms of the type 
ate-bt as well as ce-dt in the solution. We can use Feller's solution (21) if we apply the usual 
limiting procedure to the terms which have the form 0/0, but it is more convenient for our 
purpose to solve ab initio as follows. 

Let us use the Laplace transform and its inverse with respect to time given by 

0*(A) = e-qS(t) dt (R(A) > 0), 
Jo ~je~ 1 (6) 

0zi(t) = 0i eAt50*(A)dA, 
'c+ic (c+iw 

where lim J and c is positive and greater than the abscissae of all the residues. 
c-it wagc c-iw 

Taking transforms of the equations in (5) and using the boundary conditions 

pr(O) =1 (r=n) (7) 
=-0 (r <n),J 

we obtain the recurrence relations 

qr 
(rA+ 1) (n-r+ ) qr+l (r =0X l> 2X , (n - 1)l() (kr+ )(n-r+ ) 8 

and q I 

where q,. = =P J e-Apr(t)dt. 
It follows from (8) that qr is given by 
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It is important to note that if r > (n + 1), then the factors in the denominator are all 
different, while if r < 2 (n + 1) some of them are repeated. In the latter case we can write the 
denominator as 

(A+n){A+ 2(n- 1)}{A+ 3(n-2)} ... {A+r(n-r+ 1)}2{A+ (r+ 1) (n-r)}2 ... 

x {A + (1n-1) (2n + 2)}2 {A + n(ln +1)}2, for n even, (10) 
and 

(A+n){A+2(n- 1)}{A+3(n-2)}... {A+r(n-r+ 1)}2{A+(r+ 1)(n-r)}2 ... 

X A +( (2) (A+( + ), Ifornodd. (11) 

Thus all terms after the (r - 1)th are squared, unless n is odd, in which case the last term is 
not squared. 

We can now see the general character of the solution. To find p, we merely express qr in 
partial fractions and use the inverse of the Laplace transform. Terms in the denominator 
like {A + r(n-r + 1)} and {A + r(n-r +1)}2 will give rise to exp {-r(n-r + 1) t} and 
t exp { - r(n - r + 1) t} respectively. The coefficients of the latter terms are simply the coeffi- 
cients of the corresponding terms in the expansion of q, in partial fractions. 

In particular, we have 

q_ - (n!)2/[A(A + n)2 {A + 2(n-1)}2 ..] (12) 

IA+ r> kAr~fr + ir (13) A r=1 {A+r(n-r+1)}2 {A+r(n-r+ i)}'( 

where kr = qo{A + r(n-r + 1)}2 = - - r (n!)2 (n- 2r +1)2 (114) 
A -r(n- r +1) r!(r - 1)! (n -r)! (n - r + (4 

Now if the probability generating function is 
n 

fl (XIt) = E XrPrt (15) 
r=O 

then it can be seen from (5) that H (x, t) satisfies the partial differential equation 

_=(l -)(al -x aX2f (16) at 
with the boundary condition Il(x, 0) = Xn. (17) 

The equations for the moment-generating function, M(O, t), are derived from (16) and (17) 
by writing x = e0. We find 

a = (e-0 1) (n+ 1) aM a02)' (18) 

with the boundary condition M(6, 0) -en. (19) 

Our (18) is substantially the same as equation (20) given by Bartlett (1946, p. 53), making 
proper allowance for the change of notation and variable. 

Suppose that the rth moment of the distribution of y is m', then we can substitute 

M(O) = 1 0+ + * + (20) 1+m 22m .. 
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in (18), and equate coefficients of 0 to give the following set of differential equations: 

dm' 
d = - {( 1n '"t2h( 1\mm- 

d- = + {(n + 1) ml- m'j- 2{(n + 1) m'- m'}, (1 dt - ,1 i25 2 ~ n3~ (21) 

dr=4 - {(n + 1) ml-m'} + 3{(n + 1) m4- m}-3{(n + 1) -m}, dt 1 223M 

etc., J 
where the numerical coefficients on the right-hand side can be derived from binomial ex- 
pansions. 

Unfortunately, these equations, while capable of giving the higher moments in terms of 
ml when the latter has been found, e.g. 

In = (n+1)m'+ di, (22) 

are not so convenient for finding ml itself. They can obviously be used to develop a Taylor 
expansion for ml in powers of t by successive differentiation and substitution, since all the 
moments are known when t = 0. We have, in fact, 

n(n - 2)tn(n2- 8n+ 8)3 mt = n-nt- 2! ! t3 (23) 

However, the series does not converge rapidly enough to be very useful. 
Thus we see that the usual method of equating coefficients of 0 in the partial differential 

equation for the moment-generating function, which often leads to simple differential 
equations for at least the early moments, fails to be of service in the case of stochastic epi- 
demic processes. In the next subsection we shall consider a different method of approach. 

(b) Stochastic mean values 

Let the transform of the probability-generating function be 
n 

11 *(x, A) = zrxqr. (24) 
r=O 

Referring to equations (9) to (13), it is clear that we can write 

H*(xA) = + E( +(~x) + gr(x) J, (25) 

where fr(x) and gr(x) are polynomials in x. Thus the probability-generating function itself 
is of the form H (x, t) = 1 + Z {tfr(X) + (X)} e-r(+l. (26) 

r=1 

Therefore ml(t) = = I r r (27) 

where, in the expression on the right-hand side, primes are used to indicate differentiation 
with respect to x. 

Now the transform of (16) shows that HI*(x, A) satisfies the differential equation 
a2H* al - _ 1 * = X__.( x(1- x) --2 - n(l- x) ax + AH ~(28) 
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If we substitute (25) in (28), multiply by {A+r(n-r+ 1)}2 and then put A =-r(n-r+ 1), 

we obtain x( l-x) fr - n( l-x) f,- r(n-r + 1) f, = ?. (29) 

Thesolution of (29) is fr(x) = CF{-r, - n + r - 1; -fnX, (30) 
where F is a terminating hypergeometric series and C an arbitrary constant. However, 
C is evidently the coefficient of {A + r(n - r + 1)}-2 in the partial fraction expansion of qO, 
i.e. Cd=kr, whose value is given in (14). Substituting this value in (30), differentiating with 
respect to x and then putting x = 1 gives 

fir (1 ) =kr dF 

r(n-r+ 1 =-k r F{-r+ 1, -n+r; -n+ 1, 1}. 

Therefore f r (I1 ) n!(n-2r+ 1)2 (31) 
Therefore r 

~(n-r)! (r- 1)V.'(1 
Specimen values of these coefficients, occurring in the expression for m'(t) given by (27), are 

r f"(1) 

1 n(n -1)2 
2 n(n-1) (n-3)2/1! (32) 
3 n(n-1) (n-2) (n-5)2/2! 
4 n(n-1) (n-2) (n-3) (n-7)2/3! 

etc. 
To find the polynomials g,(x) we substitute (25) in (28), multiply by {A + r(n-r + 1)}2, 

differentiate with respect to A and then put A = - r(n - r + 1). This gives the following 
equation: x(1-x) g-n(1-x)g'-r(n-r+1)gr=-fr. (33) 

From (33) we can derive a series solution for gr(x) in terms of the known fr(x). I have un- 
fortunately been unable to find a simple and convenient general expression for gr(x), although 
it is easy to show that I 

gl(1) = n-n(n-1) 1+1+1+...+ (34) 

In view of the importance of the stochastic mean it was thought worth while to examine 
one or two cases in detail. We can calculate the probability-generating function as indicated 
above and from it derive the formula for the mean. The chief labour is in calculating the 
coefficients in the partial fraction expansions of expressions like (9), but it can, however, be 
materially reduced by suitably schematizing the computations. 

The mean value has been found for the special cases, n = 10 and n = 20. The formula 
for n = 10 is given below explicitly, and in both cases the epidemic curves are plotted in 
Figs. 1 and 2, where they are compared with the corresponding deterministic curves. 

The expressions for the stochastic mean and the epidemic curve in the special case, n = 10, 
are 

I e-10(810t- 23417) +e-18t(4410t- 9021) +e--24t(9000t- 12471) 
+ e-28(7560t + 126) + e-30t(1260t + 2268), (35) 

z = - dt l (8100t - 3156-j4) + e-18t(79,380t - 20,6501) + e-24(216,000t - 38,9313 

+e-281(211,680t-4032)+e-30t(37,800t+66,780). (36) 



200 A simple 8tochastic epidemic 

It is evident that, for both n = 10 and n = 20, the stochastic epidemic curve has a somewhat 
different character from the deterministic curve. The latter is symmetrical about its maximum 
ordinate, whereas the former is not and falls more slowly than it originally rose. On the other 
hand, it may be noticed that the time at which the maximum occurs in the stochastic case 
does not differ very much from the time of the maximum in the deterministic case. 

It is perhaps worth mentioning here that Feller's remark (1939, p. 22) about the stochastic 
mean always being less than the deterministic value is easily seen, from a comparison of our 
equations (1) and (22), to hold in the present case, provided we apply it to the mean number 
of infectious individuals (not the mean number of susceptibles)-as we should if the correct 
analogy is to be made with the process considered by Feller. In order to prevent confusion 
it should be remembered that Figs. 1 and 2 show the epidemic curve, i.e. the rate of change 
with respect to time of the mean number of infectious individuals. 

(c) Completion times 
Let us call an epidemic complete when all the available susceptibles have been exhausted; 

otherwise we shall say it is incomplete. It can be seen from (26) that H (x, oo) = 1; that is, 
the simple epidemic under consideration is always completed eventually. For more com- 
plicated types of epidemic this is not necessarily so, for the infected individuals may all 
be removed before the epidemic is complete. 

Now p0(r) is the probability that the epidemic is complete at time T. But since the number 
of susceptibles is a non-increasing function, po(T) is also the chance that the epidemic has 
been completed in the interval from 0 to T. Thus po(r) is the distribution function and dpo/dr 
the frequency function for the completion time r. 

The moment-generating function for the completion time is 

MAI(0) - Ee0r 

Jo dr 00dr 

-p eor]a - pOjP e0r dr, integrating by parts, 

=-0qo(-0), for 0< 0, 
since p0(0) = 0, p0(oo) = 1. 

Therefore MT(6) = 6-q0(-6). (37) 

Substituting for q0 from (12) we obtain 
/n 

M7(6) = (n!)2/ 6 {-0 +j(n-j + 1)} 
j=1 

=iI~~l (1 }(n- + 1)) * ~~~(38) 
The cumulant-generating function is then given by 

n ( 9 

KT(6) = - D logl 1 - ) (39) 

and the rth cumulant is evidently 
n 1 

Kr= (r-1)! ir( (40 
~j(n -j + 1))* 40 
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Each term on the right-hand side of (40) can be expanded in a series of partial fractions. 
If we collect together quantities with the same index we can write 

r 
Kr = 2(r- 1)! Ea S 

p=l 

where ap = r(r+ 1) ... (2rT-p + 1)/(r-p)! (n +1)2r-P (p <r), (41) 
ar = 1/(n+ 1)r 

and S= = 1-. 

Thus the first four cumulants are 

K 
n+1 1 

_ 4 
S,+ 

2 
2 K2- (n+ 1)3 (n+ 1)2 2' 

K3 =(n+1)5 1 (n +1)4 (n +)3 

240 120 48 12(2 K4 = - S + _S2 + + S3 + (+ S4 

I am indebted to Dr J. Wishart for pointing out to me that Sp(n) is in general most easily 
computed by writing 

Sl(n) = (n + 1)-/(1), ) 
( )- 1m- P- (43) 

S (n) =- {x-')(n + 1) 1 )!1 (1 (P > 1) 

since values of the Polygamma Functions V/r(x), V/il)(x), Vft2)(x), ... are readily available from 
Tables of the Higher Mathematical Functions by Davis (1933, 1935). 

For small n the cumulants are most easily calculated directly from (40) and for large n 
we can obtain asymptotic formulae by using the well-known expansions 

Sn)- ogn y+1 B2 1 -B41I S1(n~logn+y+ 2n 2 n2 4 n4 

_________ (1 B 2 B 4' 1 
44 

SP () (6(P) (p - ) nP-1 + nP 2 2 (ln 4 (3)n )' 

where ~(p) is Riemann's c-function, y is Euler's constant and the B's are Bernoulli's numbers. 
It is evident from (41), (42) and (44) that for large n 

K1 = ( 1){log n + y +O(n)}, (45) 

2(r - 1)! 
Kr - (r) {1 + O(n-1)} (r> 1>) r (n +1)r 

Thus the coefficient of variation is asymptotically equal to 

n12 V3 logn, (46) 
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and the limiting values of yi and Y2' the coefficients of skewness and kurtosis, are given by 

lim y = 2i~(3) = 0.806)l 
n-..o {~(2)}1(7 

lim Y2 = 3(4)= 1'200. 

Values of I, o-1, Y1i 72 and the coefficient of variation are given in the following table for 
n = 10, 20, 40, 80 and oo. 

Some characteristics of the distribution of completion time 

n U i ear Yi 71 e Y2 C. of V.(%) 

10 0-533 0186 0831 1*169 34.8 
20 0*343 0*0938 0.774 1*081 27-4 
40 0*209 0*0467 0*764 1*086 22*4 
80 0*123 0*0231 0*771 1*114 18*9 
0o ... ... 0.806 1200 0 

Thus it is evident that appreciable skewness and kurtosis remain even with large n. 
Furthermore, the coefficient of variation shows that for idealized communities in which the 
group size is 80 or less there will be considerable differences between groups with respect to 
the time taken for all the susceptibles of a group to become infected. 

5. SUMMARY 

Classical mathematical investigations into the theory of epidemics have usually been 
deterministic, i.e. they have not taken probabilities into account. The present note attempts 
to make good this deficiency for a simple epidemic, where we have the spread of a relatively 
mild infection, in which none of the infected individuals is removed from circulation by death, 
recovery or isolation. 

It is suggested that in general epidemic curves derived from stochastic means for the appro- 
priate mathematical model would be likely to bear a close resemblance to the published 
returns for actual epidemics, because it is considered that the latter are in fact summed over 
a number of epidemics occurring in small groups of associates and acquaintances. 

Curves of the stochastic means for the simple epidemic under consideration are given in 
the special cases when the group sizes are 10 and 20. The characteristics of the distribution 
of the time taken for the number of susceptibles to become exhausted are also discussed. 
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