Markov Chains

The next few lectures give a brisk discussion of

- Hitting times and mixing times.
- Three standard examples.
- Other examples.

Only occasional math arguments here, but when we use some technique later for FMIEs that parallels a technique for MC, we'll recall the MC argument then.
A discrete-time MC \((Z(t), t = 0, 1, 2, \ldots)\) is specified by its transition matrix \(P = (p_{ij})\). The \(t\)-step transition probability are
\[
P_t = \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix}
\]

A continuous-time MC \((Z(t), 0 \leq t < \infty)\) is specified by its transition rate matrix \(\mathcal{N} = (\nu_{ij})\), where given the off-diagonal entries we set
\[
\nu_i := \sum_{j \neq i} \nu_{ij}, \quad \nu_{ii} := -\nu_i.
\]

The time-\(t\) transition probability are
\[
P_t = \exp(\mathcal{N} t).
\]

If irreducible then there is a unique stationary distribution \(\pi = (\pi_i)\) and
\[
P_t = \pi_j \quad \text{as} \quad t \to \infty
\]
holds always in continuous-time. If we can find a distribution \(\pi = (\pi_i)\) such that
\[
\pi_i \nu_{ij} = \pi_j \nu_{ji} \quad \forall j \neq i
\]
then \(\pi\) is the stationary distribution and the chain is called reversible.

In our FMIE setting we use a symmetric matrix \(\mathcal{N}\) and so we have an associated continuous-time MC which is reversible and has uniform stationary distribution. We sometimes impose assume regularity:
\[
\sum_{j \neq i} \nu_{ij} = 1 \quad \forall i. \quad (1)
\]

This restriction is loosely analogous to discrete-time random walk on a graph being restricted to a regular graph.

Consider the (continuous-time) quantity
\[
z_{ij} = \int_{t=0}^{\infty} (P_t(Z(t) = j) - \pi_j) \ dt \quad (2)
\]

analogous to the discrete-time quantity
\[
z_{ij} = \sum_{t=0}^{\infty} \left(p_{ij}(t) - \pi_j \right) \quad (3)
\]

which can be viewed as a generalized inverse of the singular matrix \(I - P\). The matrix of mean hitting times \(E_i T_{j}^{\text{hit}}\) can be expressed in terms of the matrix \(Z\).
Theorem (Mean hitting time formula)

Without assuming reversibility, \(E_i T_j^{hit} = (z_{jj} - z_{ij})/\pi_j \).

See RWG 2.2 for proof and detailed discussion. Here, let me observe three consequences.

Noting \(\sum_j z_{ij} = 0 \forall i \) we get \(\sum_j (E_i T_j^{hit}) \pi_j = \sum_j z_{jj} \) and in particular

Corollary (Random Target Lemma)

\(\tau_{hit} := \sum_j (E_i T_j^{hit}) \pi_j \) does not depend on \(i \)

and so this particular statistic \(\tau_{hit} \) is the mathematically natural way to summarize the matrix of mean hitting times by a single number. Note however that \(\sum_i \pi_i z_{ij} = 0 \forall j \) and so

\[
E\pi T_j^{hit} := \sum_i \pi_i E_i T_j^{hit} = z_{jj}/\pi_j
\]

which in general does depend on \(j \).

In the FMIE setting \(\mathcal{N} \) is a symmetric matrix, which makes \(Z \) a symmetric matrix, as well as making \(\pi \) be the uniform distribution. But this does not imply that \((E_i T_j^{hit}) \) is symmetric; in fact

\[E_i T_j^{hit} = E_j T_i^{hit} \text{ iff } z_{jj} = z_{ii} \text{ iff } E\pi T_j^{hit} = E\pi T_i^{hit}. \]

A chain is transitive if for each pair \(i_1, i_2 \) there is a permutation \(\sigma \) of the state space such that \(\sigma(i_1) = i_2 \) and

\[\nu_{ij} = \nu_{\sigma(i),\sigma(j)} \forall i, j. \]

Informally, the chain “looks the same from each state”. Transitivity implies \(z_{ii} = z_{jj} \forall i,j \) and hence \(T_{ij} \overset{d}{=} T_{ji} \forall i,j \).

[Board: degrees of freedom].
There are two parallel ways to think about the dynamics of the distribution of $Z(t)$. First, in terms of matrices. The transition rate matrix \mathcal{N} has eigenvalues

$$0 = \lambda_1 > -\lambda_2 \geq -\lambda_3 \geq \ldots \geq -\lambda_n$$

and there is a spectral representation (matrix diagonalization)

$$P_i(Z(t) = j) = \pi_i^{-1/2} \pi_j^{1/2} \sum_{m=1}^{n} \exp(-\lambda_m t) u_{im} u_{jm}$$ \hspace{1cm} (5)$$

for orthonormal U. In particular, the time-asymptotics for convergence to stationarity are

$$P_i(Z(t) = j) - \pi_j = c_{ij} e^{-\lambda_2 t} + o(e^{-\lambda_2 t}) \quad \text{as} \quad t \to \infty. \hspace{1cm} (6)$$

Jargon: λ_2 is the spectral gap, $\tau_{rel} := 1/\lambda_2$ is the relaxation time.

Knowing λ_2 doesn’t tell you anything precise about the finite-time distribution of the MC starting at an arbitrary state, but it does tell you some things about the stationary chain. For instance (cf. the extremal characterization later)

$$\max_{f,g} \text{cor}_\pi(f(Z(0)), g(Z(t))) = \exp(-\lambda_2 t).$$

Note also

$$P_i(Z(t) = i) = \pi_i + \sum_{m \geq 2} u_{im}^2 \exp(-\lambda_m t)$$ \hspace{1cm} (7)$$

so the right side is decreasing with t, and in fact is completely monotone.
The second way – which we might call “L^2 theory” or “the Dirichlet formalism” – requires some notational setup. For a “test function” $g : \text{Agents} \to \mathbb{R}$ write

$$\bar{g} = \sum_i \pi_i g_i$$

$$\|g\|_2^2 = \sum_i \pi_i g_i^2$$

$$\mathcal{E}(g, g) = \frac{1}{2} \sum_i \sum_{j \neq i} \pi_i \nu_{ij} (g_j - g_i)^2 \quad \text{(the Dirichlet form).}$$

When $\bar{g} = 0$ then $\|g\|_2$ measures “global” variability of g whereas $\mathcal{E}(g, g)$ measures “local” variability relative to the underlying geometry.

[Discussion on board]

For a (signed) measure θ we define $\|\theta\|_{2(m)} = \|f\|_2$ for the density $f_i = \theta_i / \pi_i$, and then for a PM μ we have

$$\|\mu - \pi\|_{2(m)}^2 = -1 + \sum_i \mu_i^2 / \pi_i.$$

This is “L^2 distance” for probability measures.

Why is this viewpoint useful?

The basic evolution equation, for the time-t distribution $\rho(t) = (\rho_j(t))$ from an arbitrary start, is

$$\frac{d}{dt} \rho_j(t) = \sum_i \nu_{ij} \rho_i(t) \quad (8)$$

from which we previously obtained

$$\mathbb{P}_i(Z(t) = j) \text{ are entries of } \exp(\mathcal{N}t).$$

But a little algebra, directly from (8), gives

Lemma (Global convergence equation)

$$\frac{d}{dt} \|\rho(t) - \pi\|_{2(m)}^2 = -2\mathcal{E}(f(t), f(t)); \quad f_j(t) = \rho_j(t) / \pi_j.$$

Because $\mathcal{E} \geq 0$ this gives a certain “monotonicity” in global convergence; cf. monotonicity of $\mathbb{P}_i(Z(t) = i)$.

Reformulating the classical Rayleigh–Ritz extremal characterization of eigenvalues:

Theorem (Extremal characterization of relaxation time)

\[\tau_{rel} = \sup \{ ||g||_2^2 / \mathcal{E}(g, g) : \bar{g} = 0 \} \]

So we can get lower bounds on \(\tau_{rel} \) by plugging in a test function \(g \) chosen heuristically. Much of (algorithm-related) uses of finite MCs involves getting reasonable upper bounds on \(\tau_{rel} \) and \(\tau_{mix} \) below. The extremal characterization doesn’t help directly but is the starting point for other methodologies.

Combining the extremal characterization with the global convergence equation leads easily to [calculation on board]

Lemma (\(L^2 \) contraction lemma)

The time-\(t \) distributions \(\rho(t) \) of a reversible MC satisfy

\[||\rho(t) - \pi||_{2(m)} \leq e^{-t/\tau_{2}} ||\rho(0) - \pi||_{2(m)} \]

Hitting times and mixing times are distinct aspects of a MC; but here’s a minor connection. Write \(T_A^{hit} \) for the hitting time on a subset \(A \subset \text{Agents} \).

Proposition

For a subset \(A \) of a continuous-time chain,

\[\sup_t \left| \mathbb{P}_\pi(T_A > t) - \exp(-t/\mathbb{E}_\pi T_A) \right| \leq \tau_{rel}/\mathbb{E}_\pi T_A. \]

In words: for the hitting time distribution to be approximately Exponential it is sufficient that the mean hitting time be large compared to the relaxation time \(\tau_{rel} \).

Theory project. Give a bound on the dependence between initial state \(X(0) \) and \(T_A \), for instance

\[\max_{f, g} \text{cor}(f(X(0)), h(T_A)) \leq \psi(\tau_{rel}/\mathbb{E}_\pi T_A). \]

For another connection, recall the Random Target Lemma said that \(\tau_{hit} := \sum_j (\mathbb{E}_i T_j^{hit}) \pi_j \) does not depend on \(i \). It turns out that \(\tau_{hit} \) has a simple expression in terms of the eigenvalues:

\[\tau_{hit} = \sum_{i=1}^n \frac{1}{\lambda_i} \quad \text{the eigentime identity}. \]
Variation distance (or total variation) between a PM μ and the stationary distribution π is defined as

$$||\mu - \pi||_{VD} := \frac{1}{2} \sum_i |\mu_i - \pi_i|.$$

This is essentially “L^1 distance”. Note that, like “L^2 distance”, it ignores the geometry.

For a continuous-time MC, define **(variation distance) mixing time** τ_{mix} to be the smallest time t for which

$$\max_i ||P_i(Z(t) \in \cdot) - \pi(\cdot)||_{VD} \leq 1/(2e).$$

The choice of constant on the right must be $< 1/2$ but is otherwise rather arbitrary; the particular choice $1/(2e)$ ensures

$$\tau_{\text{rel}} \leq \tau_{\text{mix}}.$$

Variation distance and τ_{mix} are central to many theoretical algorithmic uses of MCs – see Montenegro-Tetali (2006) and the monographs.

The general version of the “bottleneck parameters” earlier are defined in terms of stationary flow rates

$$Q(A, A^c) := \sum_{i \in A, j \in A^c} \pi_i \nu_{ij}.$$

In particular, define the **Cheeger time constant** by

$$\tau_{\text{cond}} := \sup_A \frac{\pi(A)(1 - \pi(A))}{Q(A, A^c)}.$$

[Discussion on board: up to factors of 2 this is $1/$conductance; n-cycle case].

There is a (not easy)

Theorem (Cheeger’s inequality)

For any continuous-time reversible MC,

$$\tau_{\text{rel}} \leq 8\tau_{\text{cond}} \max_i \nu_i.$$
So in the FMIE context with the regularity assumption (1) we have
\[
\phi(m) = \min \{ \nu(A, A^c) : |A| = m \}, \quad 1 \leq m \leq n - 1
\]

\[
\tau_{\text{cond}} := \sup_m \frac{m \frac{n-m}{n}}{\phi(m)}.
\]

and Cheeger’s inequality becomes
\[
\tau_{\text{rel}} \leq 8\tau_{\text{cond}}^2.
\]

More sophisticated results can be found in the survey by Montenegro-Tetali (2006).

Helpful intuition is that a sequence
\[
\hat{Z}_1, \hat{Z}_2, \ldots
\]

obtained as either a stationary MC sampled at multiples of \(\tau_{\text{rel}} \)
\[
Z(\tau_{\text{rel}}), Z(2\tau_{\text{rel}}), \ldots
\]
or an arbitrary-start MC sampled at multiples of \(\tau_{\text{mix}} \)
\[
Z(\tau_{\text{mix}}), Z(2\tau_{\text{mix}}), \ldots
\]

behaves similarly to an IID sequence as far as quantitative versions of limit theorems are concerned. See e.g. León-Perron (2004) for a large deviation inequality for occupation times.
Another well-studied MC topic is the **cover time**

\[C := \max_j T_j^{\text{hit}} = \text{time until every state visited.} \]

There is a “non-clever” bound in term of the parameter
\[\tau^* := \max_i \mathbb{E} T_i^{\text{hit}}, \]
because inductively

\[\mathbb{P}_i(T_i^{\text{hit}} > 2m\tau^*) \leq 2^{-m}, \quad m = 1, 2, 3, \ldots \]

and it quickly follows that

\[\max_i \mathbb{E}_i C \leq (1 + o(1))\tau^* \log n. \]

And a “clever” argument called **Matthews’ method** sharpens this to

\[\max_i \mathbb{E}_i C \leq \tau^* \sum_{i=1}^{n-1} 1/i. \]

Recent deep results of Ding-Lee-Peres (2010) give very sharp general estimates of \(\mathbb{E}C \).

Reversible Markov chains: standard examples

For any discrete-time MC with transition probabilities \(p_{ij} \) there is a corresponding continuous-time MC with transition rates \(\nu_{ij} = p_{ij} \). In particular, discrete-time RW on a \(d \)-regular undirected graph is the MC with transition probabilities

\[p_{ij} = d^{-1} \text{ for edges } (i,j) \]

and there is a corresponding continuous-time RW.

For a continuous-time MC, in the case where \(\nu_i := \sum_{j \neq i} \nu_{ij} \) is constant in \(i \), it is natural to standardize the time unit so that \(\nu_i \equiv 1 \).

[board: comments re 2 different continuous-times RWs on graphs with highly varying degrees – needs watching in all FMIE contexts]
Continuous-time RW on the complete n-vertex graph.

$$\nu_{ij} = 1/(n-1), \ j \neq i.$$

The basics are easy – no surprise!

$$\mathbb{E}_i T_j^{\text{hit}} = n - 1; \quad T_j^{\text{hit}} \overset{d}{=} \text{Exponential}(1/(n-1)),$$

$$
\mathbb{P}_i(Z(t) = i) = \frac{1}{n} + \left(1 - \frac{1}{n}\right) \exp\left(-\frac{n}{n-1}t\right).
$$

$$\tau_{\text{rel}} = \frac{n-1}{n}.$$

Because here $\tau_{\text{rel}} \approx 1$, for other geometries we can think of τ_{rel} as relaxation time relative to the complete graph case.

Continuous-time RW on the d-dimensional lattice/cube/torus.

First consider the infinite lattice \mathbb{Z}^d. Discrete-time RW on \mathbb{Z}^d is a well-studied classical object. The continuous-time RW $Z^{(d)}(t)$ is nicer in that the co-ordinate processes are independent slowed-down 1-dimensional RWs; for the origin 0 and $x = (x_1, \ldots, x_d)$

$$
\mathbb{P}_0(Z^{(d)}(t) = x) = \prod_{i=1}^{d} \mathbb{P}_0(Z^{(1)}(t/d) = x_i).
$$

Five facts you should know about RW on \mathbb{Z}^d.
(CLT): The distribution of $Z^{(d)}(t)$ for large t is approximately multivariate Normal; marginals are Normal(0, t/d).

(Local density) $\mathbb{P}_0(Z^{(1)}(t) = 0) \sim (2\pi)^{-1/2} t^{-1/2}$ and so $\mathbb{P}_0(Z^{(d)}(t) = 0) \sim (2\pi t/d)^{-d/2}$.

(Recurrence/transience) In $d = 1, 2$ RW is recurrent: each vertex is visited infinitely often. In $d \geq 3$ RW is transient: the chance state x is ever visited $\to 0$ as $|x| \to \infty$.

(Fair game: winner and mean duration). In $d = 1$, for $-a < 0 < b$

$$\mathbb{P}_0(T_b < T_{-a}) = a/(a + b); \quad \mathbb{E}_0 \min(T_{-a}, T_b) = ab.$$

Continuous-time RW on the d-dimensional torus.

One natural geometry is the 2-dimensional discrete square $[0, m - 1]^2$ as a subgraph of \mathbb{Z}^2. It is mathematically nicer to eliminate the boundary by imposing “periodic boundary conditions”, that is to use the 2-dimensional discrete torus, which is vertex-transitive. In general dimension $d \geq 1$ this becomes the d-dimensional (discrete) torus, denoted \mathbb{Z}_m^d.

Warning: we study $m \to \infty$ asymptotics for fixed d. To compare with other models, remember $n = m^d$.

We quote some basic facts. Consider $d = 1$, so \mathbb{Z}_m is the m-cycle. The eigenvalues are

$$\cos(2\pi j/m), \; 0 \leq j \leq m - 1$$

and the relaxation time is

$$\tau_{\text{rel}} = \frac{1}{1 - \cos(2\pi/m)} \sim \frac{m^2}{2\pi^2}.$$
For \(d \geq 2 \) we retain the nice property that the co-ordinate processes are independent slowed-down versions of the RW on the \(m \)-cycle; so for fixed \(m \) the \(d \)-dimensional and 1-dimensional RWs are again related by

\[
\mathbb{P}_0(Z^{(d)}(t) = \mathbf{x}) = \prod_{i=1}^{d} \mathbb{P}_0(Z^{(1)}(t/d) = x_i).
\]

From this we see that the eigenvalues on \(\mathbb{Z}_m^d \) are

\[
\lambda_{(k_1,\ldots,k_d)} = \frac{1}{d} \sum_{u=1}^{d} (1 - \cos(2\pi k_u/m)), \quad 0 \leq k_u \leq m - 1.
\]

In particular, the relaxation time satisfies

\[
\tau_2 \sim \frac{dm^2}{2\pi^2} = \frac{dn^{2/d}}{2\pi^2}.
\]

We can also use the eigentime identity to compute the mean hitting time parameter

\[
\tau_{hit} = \sum_{k_1} \cdots \sum_{k_d} 1/\lambda_{(k_1,\ldots,k_d)}
\]

(the sum excluding \((0,\ldots,0)\)),

and hence

\[
\tau_{hit} \sim m^d R_d
\]

where

\[
R_d \equiv \int_0^1 \cdots \int_0^1 \frac{1}{\frac{1}{d} \sum_{u=1}^{d} (1 - \cos(2\pi x_u))} \, dx_1 \cdots dx_d
\]

provided the integral converges. In fact by the recurrence/transience properties of RW on the whole integer lattice we must have \(R_d < \infty \) for \(d \geq 3 \) only. For \(d = 1 \) we must have \(\tau_{hit} = \Theta(m^2) \), and the case \(d = 2 \) is best understood via a later argument.
Random graphs with prescribed degree distributions

Maybe 500 papers since 2000 on such random graph models.

Configuration model: basic properties and local Galton-Watson approximation.

Continuous-time vs discrete-time RW

Mean hitting times via tree recursions. In particular, on random r-regular graph $\tau_{\text{hit}} \sim \frac{r-1}{r-2} n$

Outline. Specify (d_i), Can define models G_n of n-vertex graph, interpretable as being “random” subject to the following constraint. Write D_n for degree of a uniform random vertex of G_n, then

$$D_n \overset{d}{\to} D \text{ where } \mathbb{P}(D = i) = d_i.$$

Such models have the following “local GWBP approximation”. The structure of G_n within some fixed graph-distance r from a uniform random vertex U_n converges in distribution, as $n \to \infty$, to the random tree comprising generations 0 to r of the following modified Galton-Watson BP. The root has offspring distribution D; in subsequent generation the offspring distribution is the size-biased distribution D^* where $\mathbb{P}(D^* = i) = (i+1)d_{i+1}/\mathbb{E}D$.

Assuming $d_0 = d_1 = 0$, the GWBP is an infinite tree (non-extinction).

Assuming $\mathbb{E}D^{2+\epsilon} < \infty$ then $\mathbb{E}(D^*)^{1+\epsilon} < \infty$ and the Kesten-Stigum theorem says that the size Y_r of generation r grows at a particular rate: $Y_r/(\mathbb{E}D^*)^r \to W$ a.s. and L^1.

The results above suggest heuristics for the structure of G_n and the behavior of RW and other FMIE processes on G_n.
Let us record the following local transience principle. For a large finite-state MC whose behavior near a state i can be approximated be a transient infinite-state chain,

$$\mathbb{E}_\pi T_i^\text{hit} \approx R_i / \pi_i$$

where R_i is defined in terms of the approximating infinite-state chain as

$$\int_0^\infty p_{ii}(t) \, dt = \frac{1}{\nu q_i},$$

where q_i is the chance the infinite-state chain started at i will never return to i.

The approximation comes from (4) via a “interchange of limits” procedure which requires ad hoc justification.

In the case of simple RW on the $d \geq 3$-dimensional torus, this identifies the constant R_d at (11) as $R_d = 1/q_d$ where q_d is the chance that RW never returns to the origin. So (11) provides a formula for q_d.

In the “random graphs with prescribed degree distribution” model, this argument shows (heuristics) that $\mathbb{E}_\pi T_i^\text{hit} = \Theta(n)$.

Other geometries

The d-dimensional hypercube $\{0, 1\}^d$ is often used as the simplest non-trivial example of a geometry on which the RW is rapidly mixing. In particular it illustrates the cut-off window for variation distance mixing [xxx explain on board]. But it seems not so natural for the applications we have in mind.

Small world graphs, which start with the d-dimensional lattice and add random long edges (v, w) with probabilities $\propto ||v - w||^{-\gamma}$, are interesting but hard to study analytically.

Proximity graphs, described next, are also interesting but hard to study analytically.
Given points \((x_i)\) in the plane in general position, create edges according to a deterministic rule such as

create an edge \((x_i, x_j)\) iff the disc \(A(x_i, x_j)\) with diameter-line \((x_i, x_j)\) does not contain any third point of \((x_i)\).

Replacing the disc with a one-parameter family of other shapes, and applying this construction to random (Poisson) points, gives a family of random proximity graphs which (unlike the more familiar random geometric graphs) are always connected.

Simulation project. Study RW and other FMIE processes on these graphs.