CHAPTER 3
More General Methods

This chapter develops a more general view of the class of problems that are
typified by the traveling-salesman problem. The resulting theory of subadditive
Euclidean functionals turns out to offer a rewarding approach to many con-
crete problems and also gets closer to the essential features that make possible
theorems like that of Beardwood, Halton, and Hammersley. The chapter also
reviews recent progress on rates of convergence that have been made possible by
the consideration of two-sided bounds.

3.1. Subadditive Euclidean functionals.

We begin by detailing some general properties of a function L from the set of
finite subsets of R¢ to the nonnegative real numbers R*. The intention of these
properties is to echo the most basic features of the TSP tour-length function.
We first impose a natural normalization,

(3.1) L) =0,

and then we consider only the simplest geometric properties of homogeneity and
translation invariance:

(3.2) L(azy, 0z, ... ,aty) = aL(z1,z2,... ,Tp) foralla>0
and

(3.3) L(z +y,22 + Y,y Tn+Y) = L(zy,%2,...,%n) for all y € R%.
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of the expected tour lengths, but since the property is crucial in the abstract
setting, it deserves a special christening.

Geometric subadditivity hypothesis. There exists a constant Cg such that for
all integers m > 1, n > 1, and {z1,72,...,Zn} C o, 1]¢, we have

d

(34)  L({z1,x2...,%n}) < ZL({IIJ% LT} N Q1) + Com™
i=1

where {Q;}, 1<t < m?, is the partition of [0, 1)¢ into cubes of edge length 1 /m.

On many occasions, geometric subadditivity ((3.4)) can be verified at once
for all m > 1, but in some instances we build our way from the case of m=2to
the general case. For the moment, we just recall that in our analysis of the TSP,
we found (3.4) directly for all m at one time, and this situation may be typical.
Still, we will see later that there is a benefit to having a few tools around to help
prove geometric subadditivity.

In addition to properties (3.1)-(3.4), there is one further property of the
TSP functional that proved useful in our earlier analysis. The TSP functional is
monotone in the sense that for all n and {z;}, we have

(3.5) L(z1,22, .- -, &n) < L(T1, 22, ., Ty Tast1)-

This last property is evident for the TSP, but as we will see shortly, the property
is not present in a number of closely related problems that are of considerable
importance in the theory of combinatorial optimization. We will revisit this
issue of monotonicity in a subsequent section, but for the moment we will exploit
monotonicity as best we can.

Euclidean functionals that satisfy (3.4) will be called subadditive Euclidean
functionals, and the analysis of such functionals is at the heart of this chapter.
If (3.5) also holds, we say that L is a monotone subadditive Euclidean functional,
and this is one particularly simple class of processes that seems to go a long way
in capturing the features of the TSP that provide for an effective asymptotic
analysis. The main aim of this first section is to show that properties (3.1)- (3.5)
are sufficient to determine the asymptotic behavior of L(X1, Xa,---, X,), where
the {X;}’s are independent and uniformly distributed on {0, 1].

THEOREM 3.1.1 (basic theorem of subadditive Euclidean functionals). Sup-
pose L is a monotone subadditive Euclidean functional. If the random variables
{X;} are independent with the uniform distribution on [0, 1]¢, then as n — 00
we have with probability one that

L(X1, X2y, Xn)/m @D/ = By,

where By > 0 is a constant.

Proof. We first check that our assumptions guarantee that the worst-case
bound || L{X1, X2, -. ., Xn)|lco does not grow too rapidly. With even a modest
bound on this L® norm, we will be at liberty to use Poissonization and to
consider means and variances at will.

The argument for our bound is based on induction on the cardinality of the
finite set F = {z1,%2,...,%a} C [0, 1]¢. To set up the induction, we first take
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A = Cp2¢!, where Cp is the constant
, of (3.4), and take B = A+ L
where we note that by translation invariance ((3.3)), the value of L({m})({t;rgta);

not depend on the value of z € [0, 1]¢. By the i .
y 4 se ch
for F C [0,1]¢ with card F = 1, ¥ By choices, we certainly have that

(3.6) L(F) < Beard (F) — A.

We take (3.6) as our induction h i

ypothesis, and we
Al F 0 T ) & action 9T assume that (3.6) holds for
| We now consider the partition of [0, 1]¢ into 2¢ equal subcubes Q; with edge
ength 3, and we let F C [0,1]¢ be any set with card F = n. By the translation
Property (3.3), we can assume without loss of generality that F is not contained
in any one of the @Q;’s, so if we let I = {{ : FNQ; # 0}, we can assume that

card] > 2. By geometric subadditivity (3.4 i i i
cord f 2 2. By g0 y (3.4) and the induction hypothesis, we

(37) L(F)<Y LFNQ)+Co2? '<Bn24+Co2 ' =Bn—- A
i€l ’

S0 (1:317) completes the proof of the induction step.
ow we are in a position to take advantage of Poissonization i

pa?al!els our analysis of the TSP. We let IT dengote the Poissozri1 g:gcélslsinwﬂzz :vl::l:
unit intensity, and we set Z(t) = L(II[0,¢]¢). We note that by our induction
argument we have Z(t) = O(card (I1[0,¢]?), so Z(t) has moments of all orders

We first work toward showing that EZ(t)/t* converges, and for a while tile
affgum:nt close!y parallels one from the previous chapter. By (3.4) applie’d to
1o, )¢, we again get EZ(t) < meEZ(t/m) + Cotm® !, which on replacing ¢ b
mt and dividing by m9t? gives us the key relation: 8

(3.8) EZ(mt)/(m%?%) < EZ(t)/t¢ + Cot' .
We can then define v by
(3.9) 0<y= l}nnliglofEZ(m)/md <EZ(1)+Cp < 0.

Now for the:‘ last part of the argument that parallels our analysis of the TSP, we
note that given any € > 0, we can choose a tg such that ’

EZ(to)/td +Coth @ <y + e

The argt‘m.lent now changes at least a little as we start to rely more on the

$}c}>noton1?tyk propltlarty (3.5) of L, though the significant changes emerge only
en we look at the second moment of Z(t) and whe

the Poissonization. © n we need to-back out of
We first note that the monotonicity (3.5) of L gives us the pathwise mono-

tonicity of Z(t), so fi .
boundg’ (t), so for mtg < u < (m + 1)t we certainly have the expectation

EZ(u)/u* < EZ((m + 1)to)/(mto)? < (v + €)(m + 1)¢/m?.

| . —
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Hence we find by taking the limit supremum and using the arbitrariness of m

that . )
limsup EZ(u)/u? < litrggleZ(I)/t be,

Uu— o0
so by the arbitrariness of € > 0, we conclude that

(3.10) EZ(t)/t' —» v ast— oo.

The next step is to work toward an understanding of the szcond moinc.ant
of Z(t), and finally the argument sets a new course. We begin ‘by app ymlge
the geometric subadditivity condition (3.4) w1th. m = 2 to the 1;01ss;)n sa,rrflill)1 e
I1[0, 2¢)¢. On writing Z;(t) for L(T1(Q:)) and noting the change of scale, we

2d
(3.11) Z(2) <Y Zi(t) + Co2* 't

i=1
To get a somewhat simpler inequality, we set Z(t) = Z(t) + 2Cot and Z;(t) =
Z;(t) + 2Cot so that inequality (3.11) implies

>

2d
(3.12) Z(2t) <) Zi().
i=1

5 1
If we write ¢(t) = EZ(t) = EZ;(t) and $(t) = (EZ(t)?)? = (EZ;(t)?)7, we find
by squaring (3.12) and taking expectations that

p3(2t) < 29°(0) + 242 - 1)¢7(2).
Introducing V(¢) = Var Z(t) = %2(t) — ¢*(t), we are led to
V(2t) = 92(2t) — ¢2(2t) < 20V (2) + 229¢%(¢) — ¢*(20),
and upon dividing by (2t)%¢, we find our fundamental recursion:

vy V@) ¢k 22t
(2t)2d T odg2d = f2d (2t)2d

(3.13)

By applying this bound for ¢,2¢,..., oM-1¢ and summing, we find

i‘: V() Mz‘:‘ V(2t) _ #%(t)

(2k¢)2d - (2Ft)2d = g2d

k=1

so finally, N , "
L V(2R %) V(t
1-2793 (25%)2‘1 S Jd T pd

k=1
Since this bound holds for all M, we can let M — oo and arrive at the main fact
we need concerning V(t):

(3.14) ST v(@k)/(26)* < oo.

oo
k=1
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In order to use (3.14) to complete the proof, we again call on the Borel Cantelli
lemma, but this time we need to add an interpolation argument that makes
essential use of monotonicity; after all, the sum (3.14) is over a very sparse
subsequence.

The argument first requires that we bring our original variables { X1, X, .. 3
back into view. To do this, we let N(t) be a regular (one-dimensional) Pois-
son counting process with rate one that is independent of {X; : 1 < % < oo}.
The point of this change is the simple observation that Z(t) = L(II[0, ¢]4) and
tL(Xy,Xq,..., X N(t¢)) have the same distribution for each t, but we have made
progress since the {X;}’s of our theorem are present in the second expression.
Since we have already found that EZ(t) ~ Bt¢ as t — oo, we find from (3.14)
and Chebyshev’s inequality that for any € > 0 we have

D P12 L(X1, Xa, ..., Xy (panea))/(£25)% = B] > €} < co.
k=0

By the Borel-Cantelli lemma, we see that for each ¢t > 0,

(3.15) Jim L(X1, Xa, ..., Xnageay)/(t2F)" 1 = B ass.

Now for the interpolation argument. For any fixed integer p > 0 and any
real number s > 2P, we can find integers t and k such that 27 < ¢t < 2P+! and
2Ft < s < 2%(t + 1). By the monotonicity of L, we then have

L(X,, Xa,.. .,XN(uizkd))SL(Xl,Xg, ce. ,XN(sd))SL(Xl,Xz, R ,XN((H_I)dzkd)).

Since p is fixed, the set of integers {t : 27 < t < 2P*+!} is finite; the last pair of

inequalities and the subsequence limit (3.15) imply that with probability one we
have for real s — oo that

limsup L(X1, Xa,. .., Xn(sy)/s*! < B(1+27P)¢ !

S—00
and
liminf L(X), X, ..., Xn(s0)) /8471 > B(1 +277)1 4,
88— 00
By the arbitrariness of the integer p, we see as s — oo that

(3.16) lim L(Xy,Xa,...,Xne) /s =6 as.

The last step we take is to back out of the Poisson indexing. To do so, we
let 7(n) = min{t : N(t¥) = n} and note that by the definition of 7(n) we have
the identity

(317) L(X17X27-'-7Xn)/n(d—l)/d

= {L(XI’X27 .. '7XN(Ttn)d));fT(n)d_l}{T(’n)d_l/n(d—l)/d)}.

Finally, the first factor above goes to 3 with probability one by (3.16), and a well-
known property of the Poisson process is that 7(n)/n!/¢ — 1 with probability
one; so the second factor also converges to one almost surely, and we see that
the proof of the theorem is complete.
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