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The Annals of Probability 
1995, Vol. 23, No. 1, 87-104 

PERCOLATION AND MINIMAL SPANNING 
FORESTS IN INFINITE GRAPHS' 

BY KENNETH S. ALEXANDER 

University of Southern California 
The structure of a spanning forest that generalizes the minimal 

spanning tree is considered for infinite graphs with a value f(b) attached 
to each bond b. Of particular interest are stationary random graphs; 
examples include a lattice with iid uniform values f(b) and the Voronoi or 
complete graph on the sites of a Poisson process, with f(b) the length of b. 
The corresponding percolation models are Bernoulli bond percolation and 
the "lily pad" model of continuum percolation, respectively. It is shown 
that under a mild "simultaneous uniqueness" hypothesis, with at most 
one exception, each tree in the forest has one topological end, that is, has 
no doubly infinite paths. If there is a tree in the forest, necessarily unique, 
with two topological ends, it must contain all sites of an infinite cluster at 
the critical point in the corresponding percolation model. Trees with zero, 
or three or more, topological ends are not possible. Applications to inva- 
sion percolation are given. If all trees are one-ended, there is a unique 
optimal (locally minimax for f ) path to infinity from each site. 

1. Introduction. For a finite set V c d a Euclidean minimal spanning 
tree (MST) of V is a tree with site (that is, vertex) set V and minimal total 
length of all bonds (that is, edges). More generally, given a finite graph with 
site set V and bond set A, and a labeling function f: M -* [0, oo), a minimal 
spanning tree of (V, M, f) is a tree in (V, M) spanning V with EbEf(b) 
minimal among all such trees; (V, A, f) determines a labeled graph. It is 
natural to ask whether there is a structure analogous to the MST when 
(V, A, f) is an infinite labeled graph, and if so to consider its properties, 
especially for random labeled graphs. Two particular cases of interest are: 

the lattice / uniform model: (V, M) is a lattice in R d and 
{f(b), b EA } are iid random 
variables uniform in [0, 1] 

and 

the Poisson / Euclidean model: (V, M) is the complete 
graph on the set of sites of 
a Poisson process and f is 
Euclidean length. 
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88 K. S. ALEXANDER 

In the latter case one can allow more general stationary point processes, 
yielding the stationary / Euclidean model. 

The natural way to define such an MST analog is to find a property of 
bonds in a labeled graph which (i) in finite graphs, characterizes membership 
in the MST and (ii) makes sense in infinite graphs as well. This property then 
becomes the definition of membership in the MST analog. One such defini- 
tion, based on Prim's inductive construction in [16] of the MST in finite 
graphs, was used by Aldous and Steele [1] for the stationary/Euclidean 
model; it yields a "minimal spanning forest" (MSF) in which every component 
is an infinite tree. Our definition, despite appearing quite different, is equiva- 
lent to theirs in a large class of models, which includes the lattice/uniform 
and Poisson/Euclidean. 

The main structure of an infinite tree is given by its number of topological 
ends, which is the number of infinite self-avoiding paths from any fixed 
vertex. Thus a zero-ended infinite tree must contain sites of infinite degree, a 
one-ended tree is like an infinite system of river tributaries, a two-ended tree 
consists of a single doubly infinite path (the trunk) with finite branches 
emanating from it and a tree with three or more ends must contain at least 
one branch point, that is, a point from which there are at least three disjoint 
infinite self-avoiding paths. Aldous and Steele [1] conjectured that for the 
Poisson/Euclidean model, their MSF consists of a single one-ended tree. 

Corresponding to any infinite random labeled graph X = (V, M, f), there 
is a percolation model as follows. We say a bond b is occupied at level r if 
f(b) < r. Let X<r denote the graph with site set V and bond set {b ed: 
f(b) < r}. An r-cluster is a connected component of X< r'p and we say percola- 
tion occurs at level r in X if there is an infinite r-cluster. The critical point is 

r,( X) = inf{ r: percolation occurs in X at level r). 
For the lattice/uniform model, the corresponding percolation model is 
Bernoulli bond percolation; for the stationary/Euclidean model, the corre- 
sponding percolation model is equivalent to the fixed-radius case of the 
standard blob model of continuum percolation, in which a closed ball of 
radius r/2 is centered at each point-process site, and one considers connected 
components of the union of the balls. This union is called the occupied space; 
its complement is the vacant space. The labeled-graph formulation enables 
one to couple all values of the order parameter r; see [2] for more examples of 
such coupling. 

Let X< r denote the graph with site set V and bond set {b ed: f(b) < r. 
A strict r-cluster is a connected component of X< r. 

We say simultaneous uniqueness holds for a labeled graph if there is at 
most one infinite r-cluster for every value of r. Note that "simultaneous 
uniqueness a.s." is not the same as the property that for each fixed r, 
uniqueness holds a.s. at level r; see Example 1.9 of [2]. A sufficient condition 
from [2] for simultaneous uniqueness is given here in Proposition 2.2. We say 
that strict simultaneous uniqueness holds if there is at most one infinite 
strict r-cluster for every value of r. We will see that under mild assumptions, 
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PERCOLATION AND FORESTS IN GRAPHS 89 

simultaneous uniqueness and strict simultaneous uniqueness are equivalent 
a.s. 

We will examine here some relations between the structure of the MSF 
and properties of the corresponding percolation model for stationary random 
labeled graphs. In graphs for which the MSF is well defined, we will show 
that if strict simultaneous uniqueness holds, then the MSF contains at most 
one tree with other than one topological end; if it exists, this one exceptional 
tree has two topological ends and contains all sites of an infinite cluster at 
the critical point in the corresponding percolation model. Thus if there is no 
percolation at the critical point, as is believed to be true for most models of 
interest, then there are only one-ended trees. Even without strict simultane- 
ous uniqueness, all trees in the MSF have one or two ends. 

It would be desirable to also have implications in the other direction, that 
is, that percolation at the critical point implies something about the structure 
of the MSF, at least within restricted classes of models. Thus far we have not 
been able to obtain such results. 

When all trees in the MSF are one-ended, there is a canonical one-to-one 
correspondence between sites and bonds in the MSF-one associates to each 
site the unique bond emanating "toward infinity" from that site. Aldous and 
Steele [ 1] used their MSF results to prove certain limit theorems about MST's 
of finite random point sets; proofs of some such limit theorems may be made 
easier by the use of this correspondence. 

2. Statement of main results. The formal definition of a stationary 
random labeled graph X in Rd can be found in [2]. Omitting technicalities, it 
is defined as a locally finite point process in the disjoint union of the site 
space RWd and the labeled-bond space (REd A Rd) X R, restricted so that if 
(x, y) is a bond, then x and y are sites, and with distribution invariant 
under simultaneous translation of sites and labeled bonds. Here R0d A Rd 
denotes the set of pairs ( x, y >, x, y E D=d, with ( x, y > and ( y, x > identified. 
Such a graph can include sites of infinite degree, but a.s. has only finitely 
many sites in each bounded region; the asymptotic density of sites may be 
infinite. Multiple bonds between a fixed pair of sites are not allowed, but one 
can obtain results for graphs with such multiple bonds by deleting all bonds 
between each fixed pair x and y except the one with the smallest label. 
Bonds of form ( x, x>, called loop bonds, are allowed. We let V denote the set 
of sites, M the set of bonds and f the labeling function, so that X can be 
identified with the triple (V, A, f). Alternately, Rd may be replaced through- 
out by a lattice L, with translation allowed by elements of L only; without 
further mention, we use this formulation when appropriate, as in the 
lattice/uniform model. 

To ensure that the graphs G = (V, A, f) we deal with have a well-defined 
unique MST or MSF, we will make two assumptions throughout: (1) all bond 
labels are distinct and (2) for every component C and every finite proper 
subset A of V n C, there is a unique f-minimizing bond among all bonds that 
connect sites in A to sites in V \ A. Assuming (1), a sufficient condition for (2) 
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90 K. S. ALEXANDER 

is that every site has finite degree in G, r for every r; this is satisfied a.s. in 
the lattice/uniform model and in the stationary/Euclidean model provided 
the stationary point process of sites is locally finite. We call G locally finite if 
V n R is finite for all bounded regions R and call a labeled graph that 
satisfies (1) and (2) ambiguity-free. 

Given a graph G = (V, AW, f) and a subgraph H, define 

dH:= {b = (x, y> Em': x e H, y 4 H}. 

In a mild abuse of terminology we will call f(b) the length of b and refer to 
bonds as shorter, longest, and so forth; this should not cause confusion 
because we never make use of Euclidean length of bonds except when it 
coincides with the labeling by f. 

The MST in finite graphs can be constructed by an inductive "invasion" 
procedure known as Prim's algorithm [16]; the same procedure was used by 
Aldous and Steele [11 to define their MSF for certain infinite graphs. Specifi- 
cally, let (V, AW, f) be a labeled graph and let v E V be a site. Let Jo(v) = {v} 
and, given Jn(v), let Jn+ (v) be Jn(v) together with the shortest (that is, 
f-minimizing) bond Bn 1 in 9 Jn(v), including the endpoint of BnI 1 in 
V \ Jn(v). Let J0,(v) U n 2 0 Jn(V). We say a bond b is invaded from v if 
b E Joo(v). 

For y a self-avoiding path in a graph and u, v sites in y, let zag denote the 
segment of y from u to v. We say a self-avoiding path y in a labeled graph 
(V, IW, f) is locally f-minimax if for every pair u, v of sites in y and every 
path a from u to v, 

max(f(b): b E ZaJ < max( f(b): b Er a). 

To define our MSF, we will need the next proposition. All the equivalences 
are well known in the case of finite graphs; see [15]. For infinite graphs, we 
essentially need only verify that existing ideas for finite graphs can establish 
equivalence among (2.1)-(2.5) without using equivalence to (2.6) or finiteness 
of the graph. The proofs of.this and all results in this section appear in 
Section 3. 

PROPOSITION 2.1. Let G = (V, A, f) be a (finite or infinite) ambiguity-free 
labeled graph and let b = <x, y> _W with x = y. The following are equiva- 
lent: 

(2.1) There exists a set A of sites such that b is the shortest bond 
fromAtoV\A. 

(2.2) There exists no path from x to y with all bonds strictly 
(2.2) shorter than b. 

(2.3) b is a bond in some locally f-minimax path. 
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PERCOLATION AND FORESTS IN GRAPHS 91 

The following are equivalent: 

(2.4) b is invaded either from x or from y. 

x and y are in distinct strict f(b)-clusters and these clusters 
(2.5) are not both infinite. 

If strict simultaneous uniqueness holds for G, then (2.1)-(2.5) are all equiva- 
lent. If G is finite, then (2.1)-(2.5) are each equivalent to 

(2.6) b is a bond of the MST of G. 

Again, shorter means having a smaller label. Equivalence of (2.4) and (2.6) 
for finite graphs is the basis of Prim's algorithm [151 for constructing the 
MST and shows that the set of invaded bonds does not depend on the starting 
site in finite graphs. We call (2.2) the creek-crossing criterion, by analogy to a 
hiker trying to cross a creek by stepping from stone to stone, avoiding getting 
wet by never taking an available step if a path of all strictly shorter steps 
exists. 

Aldous and Steele [1] defined a spanning forest consisting of all bonds 
satisfying (2.4) and proved that (2.4) and (2.5) are equivalent. We prefer to 
use the creek-crossing criterion as our definition, that is, we define the 
minimal spanning forest (or MSF) of an ambiguity-free labeled graph G = 
(V, A, f ) to be the graph with site set V and bond set 

{b = (x, y> e A: there is no path from x to y 
consisting entirely of bonds e with f( e) < f( b)}. 

Because simultaneous uniqueness plays a major role in this work, we will 
give a sufficient condition for it from [2]. For this we need the notion of 
positive finite energy: for a full definition in our context, see [2]; the idea 
appears in [6]. Loosely, positive finite energy means that conditioning on the 
graph outside a finite box, together with certain partial information about 
bonds crossing the box boundary, a.s. yields a nonzero probability that all 
sites within that box are .connected at a given level r, at least for r large 
enough that percolation occurs at level r. 

Letting At denote [- t, tVd, let us define the site density of a stationary 
random graph X = (V, A, f) to be 

lim. IV n At i/lAt i, 
t X-.0 

where [X] denotes cardinality for finite sets and volume for regions in Rd. 

Stationarity ensures that this limit exists a.s. 

PROPOSITION 2.2 ([2], Theorem 1.8 and Remark 1.10). Suppose X is a 
stationary random labeled graph in Rd, with positive finite energy and finite 
site density a.s. Then both simultaneous uniqueness and strict simultaneous 
uniqueness hold for X, a.s. 
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92 K. S. ALEXANDER 

The lattice/uniform and Poisson/Euclidean models clearly have positive 
finite energy and finite site density, so Proposition 2.2 shows that for these 
models, our definition (2.2) is equivalent to the definition (2.4) used by Aldous 
and Steele [1]. 

The distinction between strict and nonstrict simultaneous uniqueness is 
important in our results. Therefore, we will explicate the distinction by way 
of the following result, though Proposition 2.2 makes it nonessential to our 
main results. 

LEMMA 2.3. (i) Suppose G is an infinite labeled graph with all labels 
distinct. If strict simultaneous uniqueness holds for G, then so does simulta- 
neous uniqueness. 

(ii) Suppose X is a stationary random labeled graph in Rd that a.s. has 
finite site density and all labels distinct. Then with probability 1, simultane- 
ous uniqueness holds for X if and only if strict simultaneous uniqueness holds 
for X. 

The assumption of all labels distinct cannot be eliminated in Lemma 2.3. It 
is easily verified that in the stationary random labeled graph of Example 1.9 
of [2], strict simultaneous uniqueness holds a.s. but not simultaneous unique- 
ness. See also Example 5.2 below. 

It is immediate from the creek-crossing criterion (2.2) that the longest bond 
in any cycle in a labeled graph G is not in the MSF. Thus the MSF is acyclic. 
Criterion (2.1) ensures that in an infinite ambiguity-free connected labeled 
graph, every component of the MSF is infinite. In particular, there are no 
one-point components, meaning the MSF spans the site set V. This proves the 
following, which justifies the name "minimal spanning forest." 

LEMMA 2.4. In an ambiguity-free labeled graph G = (V, A, f) with all 
components infinite, the MSF is a forest that spans V and consists of infinite 
trees. 

For an infinite lattice, a completely different way of obtaining a random 
spanning forest is considered in [141. 

Let C0,(G, r) denote the union of all infinite r-clusters in the graph G and 
let C.t(G, r) be the union of all infinite strict r-clusters. Here is our main 
result. 

THEOREM 2.5. Suppose X is a stationary random labeled graph in Rd that 
a.s. is ambiguity-free, has finite site density and has all components infinite. 
Then with probability 1: 

(i) The MSF contains no zero-ended trees or trees with three or more ends. 
(ii) If simultaneous uniqueness holds for X, then the MSF includes at most 

one two-ended tree; all other trees are one-ended. If a two-ended tree T exists, 
then there is percolation at level r (X) in the corresponding percolation model, 
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PERCOLATION AND FORESTS IN GRAPHS 93 

T contains all sites of CQt(X, rc(X)) and the trunk of T is contained in 
CQ'(X9 rc(X)). 

If X is ergodic, then there is a nonrandom almost-sure value of the critical 
point rj(X), which we denote rc. 

Consider a planar graph G, without loop bonds, embedded in R2. The 
bonds, viewed as curves in R2, divide the plane into faces, which are 
connected components of the complement of the graph. We call G latticelike if 
(i) G is locally finite, (ii) every site in G has finite degree, (iii) G is connected, 
(iv) G is planar, (v) G has no loop bonds and (vi) every face is bounded. For a 
lattice-like graph, a dual graph, also planar, is obtained by selecting an 
arbitrary "face site" in each face and then, for each bond b that forms part of 
the boundary between two distinct faces, putting a dual bond b* between the 
face sites in these faces. For G labeled, a dual bond b* is said to be strictly 
occupied at level r if and only if f(b) 2 r. 

THEOREM 2.6. Suppose G is an ambiguity-free lattice-like labeled graph in 
R2. If the MSF of G consists of more than one tree, then there is percolation of 
strictly occupied dual bonds at level rc(G) in the corresponding percolation 
model. 

EXAMPLE 2.7. For the lattice/uniform model on the hypercubic lattice, it 
is known for dimensions d = 2 [11] and for sufficiently large d [91 that there 
is no percolation at the critical point in the corresponding percolation model; 
the best result at present is that d 2 19 is "sufficiently large" [10]. Therefore, 
all trees in the MSF are one-ended. For d = 2, where the lattice and its dual 
are isomorphic, there is also no percolation in the dual graph at level rc [111, 
so the MSF consists of a single one-ended tree, as was proved in [4]. 

EXAMPLE 2.8. For the two-dimensional stationary/Euclidean model, in 
place of the complete graph on the site set V, one may consider the Voronoi 
graph, defined as follows. Let d(, ) denote Euclidean distance. Given V, 
divide the plane into the polygonal cells 

Q(v) := y e R2: d(y, v) < d(y, x) for all xEV V}, vEV. 

The Voronoi graph has site set V and bond set 

{ (u, v: u, v E V, Q(u) and Q(v) have an edge in common), 

labeled by Euclidean length. It is easily checked that only Voronoi bonds can 
satisfy (2.1) or (2.2), so the MSF is the same for the Voronoi graph as for the 
complete graph. This is well known for finite graphs; see [15]. The Voronoi 
graph is a.s. lattice-like, so Theorem 2.6 can be applied. Percolation at level r 
in the graph dual to the Voronoi graph is equivalent to percolation of vacant 
space in the corresponding blob model at level r (radius r/2). In the Poisson 
case, it is proved in [3] that there is no percolation of vacant or occupied space 
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at level rc. Therefore, the MSF consists of a single one-ended tree, as 
conjectured by Aldous and Steele [1]. 

3. Proofs of the main results. 

PROOF OF PROPOSITION 2.1. We will show (2.1) < (2.2), (2.2) < (2.3) and, 
under strict simultaneous uniqueness, (2.2) < (2.5). The equivalence (2.4) < 
(2.5) is proved in [1]. The equivalence (2.1) < (2.6) for finite graphs can be 
found in [15]. 

Suppose first that (2.1) holds and x E A, y E V \A. If y is a path from x 
to y, then y includes a bond e from A to V\A. By (2.1), f(e) 2 f(b). Since y 
is arbitrary, (2.2) follows. Conversely suppose (2.2) holds and let A be the 
strict f(b)-cluster containing x. By (2.2), y E V\A and by definition of 
"strict f(b)-cluster," there is no bond shorter than b from A to V\A. Thus 
(2.1) holds and we have (2.1) (2.2). 

Next suppose (2.3) holds. Suppose a is a path from x to y. Then by 
definition of "locally f-minimax," max{ f(e): e Ec a) 2 f(b). Since a is arbi- 
trary, (2.2) holds. Conversely, (2.2) says that b by itself constitutes a locally 
f-minimax path. Thus (2.3) < (2.2). 

Now (2.2) says that x and y are in distinct strict f(b)-clusters. Under 
strict simultaneous uniqueness, these clusters are necessarily not both infi- 
nite, so (2.2) and (2.5) are equivalent. [1 

For a graph G in Rd and x E Rd., let OG denote the translation of G by 
-x; thus for every site v of G0 QvG has a site at 0. 

The proof of Theorem 2.5 is based principally on the idea that certain 
possible structures in labeled graphs are prohibited a.s. by stationarity and 
finite site density. We begin with four propositions on this theme. The first 
says, loosely, that anything that happens only finitely many times per infinite 
cluster actually never happens. 

PROPOSITION 3.1 ([2]). Suppose X = (V, ~, f) is a stationary random la- 
beled graph in Rd with finite site density, and A is a set of labeled graphs G in 
which the origin is a site in an infinite component of G. Suppose that with 
probability 1, there are only finitely many sites v in each infinite component of 
X for which Qv X e A. Then 

P[QvXeAforsomev e V] =0. 

PROOF OF LEMMA 2.3. (i) Suppose G includes two disjoint infinite r-clus- 
ters for some r. Since there is at most one bond in G with label r, each of 
these two r-clusters contains an infinite strict r-cluster, so strict simultane- 
ous uniqueness fails. 

(ii) We may assume the random graph is ergodic, so rc(X) = rc a.s. 
Suppose that in the graph X, simultaneous uniqueness holds. We may 

assume all labels are distinct. For each r > rc, M(r) := U 8< rCoo(X, s) is an 
infinite strict r-cluster; we call any other infinite strict r-cluster extraneous. 
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For r > rc we call an infinite strict r-cluster hollow if it contains no infinite 
s-cluster, for every s < r. Thus every extraneous infinite strict cluster is 
hollow. For each site v of X let r.(v) = infIr > rc: v E CO (X, r)}. If v is a site 
of an extraneous infinite strict r-cluster for some r > rc, then v t CO (X, s) for 
any s < r, so r (v) = r; in particular, there is at most one such r for each site 
v of X. Therefore, distinct extraneous infinite strict clusters are disjoint, even 
if the corresponding values of r are distinct. 

If C is an extraneous infinite strict r-cluster for some r > rc, then since 
C M(X, r) is connected, there must be a bond b = (x, y) E dC with x E C and 
f(b) = r. Since labels are distinct, there is at most one such choice of b, x and 
y; we call b the attachment bond and x the attachment site of C. To detach 
all extraneous clusters from each other, we wish to replace the attachment 
bond <x, y) with the loop bond <x, x). We call <x, x) the altered attachment 
bond of C and give it the same label r as the attachment bond. Let Y be the 
stationary random labeled graph whose components are the extraneous 
infinite strict clusters in X together with their altered attachment bonds. In 
each component of Y, the altered attachment bond is the unique longest 
bond. Let A be the set of labeled graphs in which 0 is an endpoint of the 
unique longest bond in its connected component. If v is a site of Y, then 
OvY e A if and only if v is the altered attachment site of some extraneous 
infinite strict cluster in X. Hence O Y E A for exactly one site v in each 
infinite cluster in Y. By Proposition 3.1, we may assume there are no sites v 
with OvY E A; this means Y is empty, so there are no extraneous infinite 
strict clusters in X. 

It remains to establish uniqueness of the strict rc-cluster. Another applica- 
tion of Proposition 3.1 and the distinct-labels property shows that there are 
a.s. no bonds b in X with f(b) = rc. However, this means every infinite strict 
rc-cluster is also an infinite rc-cluster, and there is at most one of the latter. 

El 

If F is a finite set of sites in a single component of a graph G, we write 
C(G, F) for this component and let G \ F denote the subgraph of G obtained 
by deleting F and all bonds emanating from F. We write C(G, v) for 
C(G, {v}). We call such a finite F a core if there are infinitely many finite 
components in G \F that are contained in C(G, F); that is, removing F 
splits off infinitely many new finite clusters. An example is furnished by the 
"infinite-spoked bicycle wheel," in which a countable number of "rim sites" 
are located on some circle, and there are two other "hub-end" sites not on this 
circle; there is a bond between each hub-end site and each rim site. The two 
hub-end sites then form a core. Neither hub-end site is a core by itself. 

PROPOSITION 3.2 ([2]). Suppose X is a stationary random labeled graph in 
Rd with finite site density. Then with probability 1, X contains no core. 

The easy proof of the following lemma is contained in the proof of Lemma 
2.3 of [2]. 
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LEMMA 3.3. Suppose G is an infinite connected graph that contains no 
core, and v is a site of G. Then G contains an infinite self-avoiding path 
starting at v. 

PROPOSITION 3.4. Suppose T is an infinite tree that has at most finitely 
many topological ends and contains no core. Then all sites of T have finite 
degree. 

PROOF. Suppose T is an infinite tree that has k topological ends (O < k < 
oo), and v is a site of infinite degree in T. Then T\ {v) has infinitely many 
components, at most k of which contain infinite self-avoiding paths. By 
Lemma 3.3, all other components of T \ {v) are finite. However, this means 
{v) is a core. E1 

For G = (V, S7, f ) a graph and W c R18d, define the density of W in G to be 

p(W, G) = lim 1W n V n Atl/lAtl 
t a) 0 

whenever this limit exists. For A a set of graphs in Rd in which the origin is 
a site, define VA = (V e V: OvG e A). Define the density of A, or of VA, in G 
to be P(VA, G). If A is measurable and X is stationary, then P(VA, X) exists 
a.s. and 

(3.1) if P(VA, X) = 0 a.s., then VA = 4 a.s. 

Further, p(V., X) is a.s. a measure-the Palm measure associated with the 
ergodic component of X. p(V, X) is just the site density of X. Such facts are 
well known in the context of stationary point processes; see, for example, [12]. 
For a discussion in the context of stationary random graphs, see [2]. 

A branch point in a component C of a graph is a site v such that at least 
three components of C \ {v) are infinite. The proof of the following proposition 
is an adaptation of the proof of Theorem 1 of [6]. 

PROPOSITION 3.5. Suppose X = (V, M, f ) is a stationary random graph in 
Rd with finite site density. Then X contains no branch points, a.s. 

PROOF. Let A be the collection of graphs in which the origin is a branch 
point, so VA is the set of branch points in X. For t > 0, k ? 1 and v a branch 
point in a component C of X, let C(')(t, k), i = 1,..., nv(t, k), be a listing of 
those components of C \ {v) that have at least k sites in the translate v + At. 
From the definition of branch point, nv(t, k) 2 3 if t is sufficiently large; let 
A(t, k) be the set of graphs in which 0 is a branch point with no(t, k) 2 3. 
Then for s > 0, the hypotheses of Lemma 2 of [6] are satisfied for V n At+s 
(in place of S), VA(t k) n As (in place of R) and C ()(t, k) (in place of C ()) 
yielding 

IVA(tk) n AsJ ? k'IV n At+sJ. 
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Dividing by IA81 and letting s -3 00, we see that 

(3.2) P(VA(tk) X) < kjp(V, X) a.s. 
Now A(t, k) increases to A as t -) o0, and p(V., X) is a.s. a measure, so 
letting t -0oo in (3.2), we obtain p(VA, X) < k-p(V, X) a.s. Since k is arbi- 
trary, this shows P(VA, X) = 0, so by (3.1) VA = O a.s. E1 

The following lemma is related to the criterion (2.3) for membership in the 
MSF. 

LEMMA 3.6. Let G be an ambiguity-free labeled graph with MSF F. Then 
every self-avoiding path in F is locally f-minimax. 

PROOF. Let y be a self-avoiding path in F, let u, v be sites in y and let a 
be another path from u to v in G. Following yuv from u to v, then following 
a backward from v to u produces a circuit. If the longest bond b in this 
circuit appears in only one of yu and a, then either b is a loop bond or b 
fails the creek-crossing criterion (2.2), so b is not a bond of F. Therefore, b is 
a bond of a and the lemma follows. E1 

LEMMA 3.7. Suppose T is a component of the MSF of an ambiguity-free 
infinite labeled graph G and b = (x, y> E dT, with x E T. Then f(b) 2 r,(G). 
If all sites of T have finite degree in T, then there is an infinite self-avoiding 
path y in T starting at x such that f(e) < f(b) for all bonds e in y. 

PROOF. Let bo = b, x0 = x and yo = y, and let F be the MSF of G. Then 
bo 0 F, so there exists a path yo in G from x0 to yo consisting entirely of 
bonds e with f(e) < f(b0). Let b1 = (x1, y1> be the first bond in yo that is in 
dT, with x1 E T; such a bond necessarily exists since x0 E T and yo 0 T. By 
Lemma 3.6, the unique locally f-minimax path from x0 to xl lies in T and 
also consists of bonds e with f(e) < f(bo), so we may assume the section of yo 
from x0 to x1 is precisely this f-minimax path; in particular this means this 
section of y0 lies in T. Similarly, there exists a path y1 in G from x1 to y1 
consisting entirely of bonds e with f(e) <f(b1), and a first bond b2 = (x2, y2> 
in y1 that is in dT, with the section of y1 from x1 to x2 lying in T; 
inductively, this process can be continued indefinitely. Let y be the path in T 
that follows yo from x0 to x1, then yj from x1 to x2 and so on. Let 
S = y U {b1, b2, ... }. Now the bonds bi are distinct, since f(b0) > f(b1) > 
so S is infinite and connected, and all bonds e in S have f(e) < f(b). 
Therefore, f(b) ? rc(G). 

If all sites in T have finite degree, then since all bi are distinct, there must 
be infinitely many sites xi in y. Therefore, y contains an infinite self-avoid- 
ing path in T starting at x, consisting of bonds e with f(e) < f(b). :1 

Suppose T is a two-ended tree. Then for each site v in T there is a unique 
trunk site, denoted z(v), such that every infinite path in T starting from v 
first meets the trunk at z(v). 
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PROOF OF THEOREM 2.5. Let F denote the MSF of X. We may assume X 
is ergodic, so r,(X) = r, a.s. 

(i) The absence of zero-ended trees follows from Proposition 3.2, applied to 
F, and Lemma 3.3. The absence of trees with three or more ends follows from 
Proposition 3.5 applied to F. 

(ii) Suppose T is a two-ended tree of the MSF with trunk y. Let the bonds 
of y be labeled as { ... ,e_1, eo, ej, ... } in the order in which they appear when 
following y in an arbitrarily chosen direction, and let 

l+(T) = limsupf(en), I-(T) = limsupf(en). 
n- +-o n -X o 

By Proposition 3.1, for each rational q there is a.s. no first or last bond en 
with f(en) > q, so we must have l+(T) = I-(T); thus we denote the common 
value by l(T). If f(en) > 1(T) for some n, then there is an f-maximizing bond 
in y. However, by Proposition 3.1 again, using the fact that all labels are 
distinct, there is a.s. no f-maximizing bond in y and no bond with f(en) = 1(T). 
Therefore, f(en) < 1(T) for all n; thus y is part of a infinite strict l(T)-cluster 
in X and l(T) ? rc. 

By strict simultaneous uniqueness, the infinite strict l(T)-cluster in X is 
unique; we claim that T contains all sites of this cluster. If T = F, there is 
nothing to prove, so suppose T # F and let b e dT. By Propositions 3.2 
(applied to F) and 3.4, all sites of T have finite degree in T. Therefore, by 
Lemma 3.7 there is an infinite self-avoiding path in T consisting of bonds e 
with f(e) < f(b). An infinite self-avoiding path in T must include {en: n ? m} 
or {en: n < m} for some m, so it follows that l(T) < f(b). Since b E dT is 
arbitrary, the infinite strict l(T)-cluster cannot cross dT and the claim 
follows. 

Let us show that l(T) = rc. Suppose not and fix l(T) > r > rc. Since T 
contains all sites of C.t(X, l(T)), T also contains all sites of C.t(X, r). By 
Propositions 3.2, 3.4 and 3.5, z-'(v) is finite for each trunk site v, so there 
must exist x, y E C.t(X, r) with z(x) # z(y). By uniqueness, C.t(X, r) is 
connected, so for any such x, y there is a path f3 in C.t(X, r) from x to y. 
There is also a self-avoiding path a in T that goes from x to z(x), then via y 
to z(y), then to y. By Lemma 3.6, a is f-minimax. Since all bonds in 13 have 
label less than r, the same must be true for all bonds in a, so a is contained 
in C.t(X, r). It follows that y n C.t(X, r) is a nonempty connected subset of 
y. By Proposition 3.1, this connected subset a.s. has no first or last bond, so 
must be all of y. However, this would mean l(T) < r, contrary to our 
assumption. Hence no such r exists, that is, l(T) = rc, so T contains all sites 
of an infinite strict rc-cluster. Since there is at most one such cluster, the 
theorem follows. El 

PROOF OF THEOREM 2.6. Suppose T is a tree of the MSF F of G, with 
T 0 F. Let d*T be the set of dual bonds {b*: b E daT}. Since G is lattice-like, 
dT is infinite and every component of d*T is infinite. By Lemma 3.7, 
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f(b) 2 r,(G) for all b E daT, so every component of d*T is part of an infinite 
cluster of occupied dual bonds at level r,(G). EJ 

4. Invasion percolation and optimal paths to infinity. The following 
is immediate from Proposition 2.1, Lemma 3.6 and Theorem 2.5. 

PROPOSITION 4.1. For X as in Theorem 2.5 with strict simultaneous 
uniqueness holding a.s., with probability 1 for each site v there exist either 
one or two self-avoiding locally f-minimax paths in X from v to infinity. If 
there is no percolation at the critical point in the corresponding percolation 
model, there is a unique such path for each v. 

For X as in Theorem 2.5, let yx. denote the locally f-minimax path in X 
from x to infinity when there is only one, and the union of both when there 
are two. In the lattice/uniform model, the f-minimax property makes yo, or 
the tree containing 0, candidates to be called an incipient infinite cluster, but 
we have not investigated how their properties relate to those of other 
candidates that have been put forth in the literature; see [7], Section 7.4. In 
the Poisson/Euclidean model, the same holds with 0 replaced by the closest 
site to 0. 

Invasion percolation, introduced in the mathematical literature in [5], is 
defined as follows in an ambiguity-free labeled graph. Let IO(x) = {x for 
some site x. Given In(x), let A n(x) be the set of bonds not in In(x) but with at 
least one endpoint in In(x), let En+ 1(x) be the f-minimizing bond in A n(x), 
let In,1(x) = In(x) U {En+,(x)) and let I(x) = Un In(x). (Here bonds are 
viewed as containing the sites that are their endpoints.) Note that this differs 
from Prim's algorithm, the invasion procedure described in Section 2. More 
precisely, we call En+ 1(x) a backfill bond (with respect to x) if it has both 
endpoints in In(x), and a breakout bond if it has only one endpoint in In(x). 
The breakout bonds in I(x) are precisely the bonds invaded in Prim's 
algorithm, that is, the bonds in J0(x). 

THEOREM 4.2. Let X be as in Theorem 2.5, with strict simultaneous 
uniqueness holding a.s. and let F denote the MSF of X. Then with probability 
one: 

(i) An invaded bond is a breakout bond if and only if it is a bond of F. 
(ii) For every x, I=(x) contains ylxo. 
(iii) The symmetric difference I=(x)& IA,(y) is finite if and only if x and y are 

in the same tree of F. 

For the square lattice, (iii) reproduces Theorem A.1 of [5], where, by 
Example 2.7, F consists of a single tree. Nonrigorous arguments in [13] 
suggest that for the integer lattice in dimension greater than 8 there is a 
positive probability for x # y that I4O(x) and I4(y) are disjoint, much as the 
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paths of independent random walks started at x and y can be disjoint. By 
(iii), this would imply that the MSF is not connected in high dimensions. 

For A c G, let A = {b E G: b has an endpoint in A}. 

PROOF OF THEOREM 4.2. We may assume that X is ergodic and, by 
Propositions 3.2 and 3.4, that all sites have finite degree in F. 

If b = <u, v > is a breakout bond, it follows from the criterion (2.1) that b is 
a bond of F. Conversely, if b is a backfill bond, then there is a path of 
breakout bonds from u to v. Since this path lies in F and F is acyclic, b is 
not a bond of F. This proves (i). 

If the tree T of F that contains x is one-ended and b is a bond of yz, then 
only finitely many bonds of F can be reached from x via paths in F without 
passing through b. Hence by (i) only finitely many breakout bonds can be 
invaded without invading b. Therefore, b E Ij,(x) and (ii) follows for one-end- 
ed T. 

By Theorem 2.5 and Proposition 3.4, to prove (ii) in general it remains to 
consider two-ended T, with all sites of finite degree in T. The trunk consists 
of two disjoint paths, say a and A, from z(x) to infinity. Let ao = z(x) and 
let a,, a2, ... be the bonds of a and bl, b2, ... the bonds of 13, each listed 
starting from z(x). From (i), I.(x) must contain at least one of these paths, 
say 13, and In(x) n (a U 18) is a single interval of a U 13 for each n. Suppose 
ao,..., ak1 are in I4x), with ak 1 invaded at some time T > 0 and I,(x) n 
(a U /3) = {akl, ... , a, ao, bl, ..., b1} for some j. By Theorem 2.5, f(ak) < r, 
so there is a.s. no infinite f(ak)-cluster; in particular, f(bm) > f(ak) for some 
m > j. However, this means ak must be invaded before bi. Thus by induc- 
tion, ak n I.(x) for all k. Hence I.(x) contains a U /8 and (ii) follows when T 
is a two-ended tree as well. 

Turning to (iii), if x and y are in different trees of F, then it follows from 
(i) that I.(x) n I.(y) = 4. Thus suppose x and y are in the same tree T of F. 
We consider two cases. 

Case 1: T is one-ended. There exists a site sxy, where x-> first meets yy., 
starting from x or y. If sxy is neither x nor y, then T\ {sxyl includes finite 
components Tx and Ty containing x and y, respectively. Let Tx (or TY) be 4 if 
x (or y) is sxy. Let 8n(x) be the nth bond invaded, starting from x, which is 
not in Tx U Ty. Then 13n(x) is the f-minimizing bond in 

b e G: b O TX U Ty U ({1(X),,..., 1(n-X)} 

b has an endpoint in Isxy, 131( x), * *, /3n-1( X) )} 

Therefore, if pi(x) = pi(y) for all 1 < i < n - 1, then 13n(x) = Pn(y). It fol- 
lows that 13n(x) = 13n(Y) for all n and 

(4.1) I4(X) t& 4(y) C Tx U Ty, 

Note that, although Tx is finite, dTx and thus Tx may be infinite if Tx has 
sites of infinite degree. 
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Fix b = (u, v) E dTX, with u e T,. Suppose b E I.(x); we claim that 
b E Ic,(y). By (i), since b t F, b must be a backfill bond. Therefore, there is a 
path A from u to v consisting entirely of breakout bonds (with respect to x); 
by (i), A is a path in T. It follows from the creek-crossing criterion (2.2) that b 
is the longest bond in A U {b). Further, since v 0 Tx, A must pass through 
sxys and therefore b is invaded after sy. Letting 80(x) := {sxy}, we let n 2 0 
be such that b is invaded (starting from x) after pn(x) is invaded but before 
8n+ 1(x) is invaded. Then 

(4.2) f( fn+ 1(Ax)) > f( b) > f(e) for all bonds e in A. 
Now starting from y, sy is invaded before pn + (y) = n + 1(x) is invaded. 
Since sxy is a site of A, it follows from (4.2) that starting from y, all of A U {b} 
will be invaded before in + 1(Y), and our claim that b E Ij(y) follows. 

Conversely, for the same b E dTx, if b E Ic0(y), then virtually the same 
proof shows b E Ij(x). Therefore, we have 

(I(x)A I4(y)) n (dTx u dTy) = 4. 
With (4.1) this establishes (iii) for one-ended trees. 

Case 2: T is a two-ended tree with trunk -y. Let AV denote the (finite) 
component of a site v in T \ {z(v)), together will all bonds of X which have 
both endpoints in this component (so A, = (A if v E y). We claim that 

(4.3) Qs'(X, rj) c I.(v) c CQt(Xj rj) U; AV. 
Let o- be the least n such that In(v) contains z(v); such an n always exists 
by (i). Since, by Theorem 2.5 z(v) e C~t(X, rc), at all future times i 2 or, 
Ai(v) includes a bond of C~t(X, rc). Thus every bond b outside A, invaded 
after time oa has f(b) < r, so in fact all such bonds are in C~t(X, r,), and the 
second inclusion in (4.3) follows. For the first inclusion, suppose there exists a 
bond b E C~t(X, rc) \ I4o(v). Since by uniqueness Ct(X, r,) is connected, we 
can find such a b with at least one endpoint in Ij(v), so b E An(v) for some n. 
However, then f(e) < f(b) for all e E I(v) \ In(v). The graph consisting of 
such e has only finitely many connected components so it includes an infinite 
f(b)-cluster. Since f(b) < r, there is no such infinite cluster a.s. It follows 
that CQt(X, rd) \ 1(v) = 4 a.s. This proves (4.3), which in turn shows 
oo(X)A 4(y) is finite. El 

COROLLARY 4.3. In the lattice/uniform model, for every r > rc and every 
site x, at most finitely many bonds of yx. are outside the infinite r-cluster of 
the corresponding percolation model, a.s. 

PROOF. The analogous fact for I4o(x) was proved in [5], so the result 
follows from Theorem 4.1(ii). In [5], rc is replaced by a percolation threshhold 
possibly different from rc, but it was proved in [8] that the two thresholds are 
the same. El 

5. Stability of the MSF under local changes. We consider next the 
extent to which local changes in a graph can produce global changes in the 
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MSF. Specifically, for an ambiguity-free labeled graph G in Rd, let us define 
the function SG on Rd X Rd by 

( x y) 1 if x and y are sites in the same tree of the MSF of G, {0: otherwise. 
Local changes in G may cause bonds to be added to or deleted from the MSF, 
and as a result the function 8G may change. 

To begin, we define some modifications of the graph G = (V, a, f ). For 
F C Rd let 

Dr(G) = {x E V n l: (x, y > E- for some y E FC}. 
Define the restriction GIr of G to F by 

O~r = { <x, y> EG: x, y e F), 
Glr =(V n rF, r, f ) 

Here, in a slight abuse of notation, f is actually the restriction of f to Sire To 
add in bonds crossing dF, let Gj denote the restriction of G to F U DrC(G). 
We say two labeled graphs G1 and G2 agree outside F if Gljc = G2 rc. 

THEOREM 5.1. (i) Suppose G1 and G2 are ambiguity-free locally finite 
labeled graphs in Rd that agree outside At for some t > 0, and let Fi be the 
MSF of Gi. Then the symmetric difference F1 A F2 is a finite set of bonds. 

(ii) Let X be as in Theorem 2.5, with strict simultaneous uniqueness 
holding a.s. There exists a set A of labeled graphs such that (a) P(X e A) = 1 
and (b) if t > 0 and Gi = (Vi, i, fi) are labeled graphs in A that agree 
outside At, then there exists s > t such that 8Gl(X, y) = 8G2(X, y) for all 
x, y e As 

Roughly speaking, (ii) says that changes in a finite box can only shift a 
finite number of sites to different trees of the MSF. Finite changes cannot, for 
example, split a two-ended tree into two one-ended trees or glue two one-ended 
trees into a two-ended tree, except possibly by creating a labeled graph of a 
type that a.s. does not occur, that is, one not in A. 

PROOF OF THEOREM 5.1. (i) For u, v distinct sites in DAt(Gi), define 

:=inffr> 0: u is connected to v at level r in GilAtK} 
Note DA(Gi) and GiL ct do not depend on i. Suppose b = <x, y> is a bond of 
GiI ct that is in F1 but not F2. From the creek-crossing criterion (2.2), there is 
a path in G2 from x to y consisting of bonds e with f(e) < f(b), but no such 
path exists in G1 and hence none exists in Gilt. Therefore, this path in G2 
must have a bond in G21At, so for some pair u, v of distinct sites in DAI(Gi), 
there exist disjoint paths in G I +c from x to u and from y to v at some level 
less than f(b). Thus rUV < f(b). However, there can be no path from u to v at 
a level less than f(b) in GiI ct, for otherwise we would also have such a path 
from x to y. Thus ruv = f(b); since labels are distinct there is at most one 
such b for each pair u, v. Since G1 and G2 are locally finite, (i) follows. 
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(ii) We may assume X is ergodic, so by Theorem 2.5 there exists an 
n E {0, 1} such that the MSF of X has exactly n two-ended trees, a.s. Let A 
be the set of graphs for which the MSF has exactly n two-ended trees and 
satisfies the description in Theorem 2.5(ii). If n = 0, then for each bond b in 
F1 \ F2, removing b from F1 splits the tree of F1 containing b into a finite 
and an infinite piece, and similarly for b E F2 \ F1. If x and y are sites of X 
and neither x nor y is in one of these finite pieces, then 8G1(X, y) = 8G2(X, y). 
Thus for n = 0, (b) follows from (i). If n = 1, it follows from (i) that to prove 
(b) we need only eliminate the possibility that for some site z in a one-ended 
tree T of F1, the path y,,. in T is contained in the trunk of the two-ended tree 
of F2. However, this would imply that all bonds e in y%. have f(e) < rc, so T 
would meet the infinite strict rc-cluster, so in G1 the infinite strict rc-cluster 
would not be contained in the two-ended tree, meaning G1 0 A. El 

Without strict simultaneous uniqueness, Theorem 5.1(ii) is false. The MSF 
of X may then include multiple two-ended trees. Through changes in a finite 
box, it may be possible to in effect cut in half the trunks of two such trees and 
then glue the four resulting rays back together in a different pairing, as the 
following example, similar to Example 1.9 of [2], shows. 

EXAMPLE 5.2. Consider a random labeled graph X in R2 with site set Z2. 
Vertical bonds are nearest neighbor; horizontal bonds are long range. Let us 
call the subgraph in the vertical line at m, column m. Let {Um: m GE Z} be iid 
uniform [0,1] random variables and let {Tl: j E ZZ} be the arrival times of a 
stationary renewal process in Z, with interarrival times not identically 1. Let 
us refer to [?Tj, Tj, 1) n Z as block j. Conditionally on {Um: m E Z} and {T.: 
j E Z}, we label bonds as follows: For m in block j, vertical bonds ((m, k), 
(m,k + 1)> in column m get labels Wnk iid uniform in [0, Uj); for m in block i 
and n in block j, each horizontal bond ((m, k), (n, k)> independently gets a 
label uniform in (max(Ui, Uj), 1]. The discussion in Example 1.9 of [2] estab- 
lishes that X does not satisfy simultaneous uniqueness, strict or not, though 
for fixed r > 0 there is a.s. a unique infinite cluster at level r. Uniqueness 
fails precisely at the levels Uj. It is easily verified that the MSF of X consists 
precisely of all vertical bonds, so is composed of infinitely many two-ended 
trees. We now introduce local modifications to X. We can construct a crossover 
in a square [m, m + 1] x [k, k + 1] by deleting the vertical bonds ((m, k), 
(m, k + 1)>, (m + 1, k + 1)> and adding diagonal bonds ((m, k), (m + 1, k + 
1)> with label Wmk and ((m, k + 1), (m + 1, k)> with label Wm + 1, k. Let {Zmk: 
m, k E ZZ} be idd taking values 0 and 1 with probability 1/2 each. Starting 
with the graph X, in each square [m, m + 1] x [k, k + 1] we construct a 
crossover if m and m + 1 are in the same block, and Z- 1,k = 0, Zmk = 1 
and Zm+ 1, k = 0. We denote the resulting graph Y. Thus no two horizontally 
adjacent cubes both have crossovers. The subgraph of Y consisting of pre- 
cisely the vertical and diagonal bonds is made up of infinitely many distinct 
infinite lines; let us call these lines strands. Note that a horizontal bond 
emanating from a given strand is longer than any of the bonds of that strand. 

This content downloaded from 128.32.135.128 on Mon, 9 Sep 2013 14:22:19 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


104 K S. ALEXANDER 

Using the creek-crossing criterion (2.2) it follows easily that the MSF of Y a.s. 
consists precisely of the infinite collection of strands. Comparing Y itself to Y 
with a single added crossover, we see that Theorem 5.1 (ii)(b) does not hold. 
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