
6 Lower bounds in long networks; average-case

analysis

Turning to lower bounds, for Ψave we start by giving a reformulation (30)
of the interpretation (10) in terms of a Poisson point process on the infinite
plane. In (10) we required the distribution µ of the network to be translation
invariant; by applying a random rotation Θ (uniform on (0, 2π)) we may
suppose also that µ is isotropic. Recall L(µ) and S(µ) denote normalized
length and stretch. Consider the number

intersect(µ) = mean number of intersections of network edges with

the x-axis per unit length.

There is a general formula (see [10] Chapter 8 for the relevant theory) that
for any isotropic translation invariant network,

L(µ) = π

2 × intersect(µ). (29)

So we can rewrite (10) as

Ψave(s) = π

2 × inf{L(µ); µ is isotropic translation invariant, S(µ) ≤ 1 + s}.
(30)

We will use this formulation to obtain an order of magnitude lower bound
for small s. This general method was used in a somewhat different context
in [1].

Proposition 12 Ψave(s) = Ω(s−3/8) as s ↓ 0.

Proof. Given h > 0 consider the rate-1 Poisson point process restricted to
the infinite strip (−∞,∞)× [−h, h]. Consider pairs of such Poisson points,
where one point is above the x-axis and the other is below the x-axis, and
where the line segment between the two points crosses the x-axis at an angle
greater that 45◦. That is, consider pairs at positions (x1, y1) and (x2, y2)
related by

−h < min(y1, y2) < 0 < max(y1, y2) < h; |x2 − x1| < |y2 − y1|. (31)

Call such a pair friends. For each friends pair, a hypothetical straight line
segment between them crosses the x-axis at some position χ, and the set of
all such “virtual crossing positions” is a stationary point process on the line
(−∞,∞). For L > 0 write

N(h, L) = number of virtual crossing positions in [0, L].
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Now consider a network with stretch ≤ 1 + s over the rate-1 Poisson
point process on the plane. The route between two friends must cross the
x-axis at some “route-crossing position” χ�; write δ(h, s) for the maximum
possible value of the distance between the route-crossing position χ� and the
virtual crossing position χ. It is geometrically clear that this maximum is
attained when the friends are at positions (−h,−h) and (h, h), and therefore

δ(h, s) = hg−1(s) (32)

where g−1(·) is the inverse function of

g(δ) =

�
1 + (1 + δ)2 +

�
1 + (1− δ)2

2
√
2

− 1

for which we calculate
g(δ) ∼ δ2/8 as δ ↓ 0. (33)

Now choose L > 0 and partition the x-axis into blocks of length L +
2δ(h, s), consisting of a middle interval of length L surrounded by two in-
tervals of length δ(h, s). If the middle interval contains the virtual crossing
position for a pair of friends in the Poisson process, then the block contains
the route-crossing position, and it follows that the rate of such route-crossing
positions is at least P(N(h, L) ≥ 1)/(L+2δ(h, s)). We may choose h and L
arbitrarily, so appealing to (30) we have

Ψave(s) ≥ π

2 sup
h,L

P(N(h, L) ≥ 1)

L+ 2δ(h, s)
. (34)

We can lower bound the numerator via the second moment inequality

P(N(h, L) ≥ 1) ≥ (EN(h, L))2

EN2(h, L)
. (35)

It is eaasy to calculate EN(h, L), as follows. For a point (0,−y0) consider
the set of possible positions of a friend (x, y) with x > 0. The constraints
are

0 < y < h, 0 < x < y0 + y

and the area of this region equals hy0 + h2/2. It follows easily that the rate
of the stationary process of virtual crossing positions equals

2

�
h

0
(hy0 + h2/2) dy0 = 2h3.
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The initial factor 2 arises due to the symmetric possibility (0,+y0) for the
left point. So we have shown

EN(h, L) = 2h3L.

We will be concerned with the limit regime

h → ∞, L → 0, 2h3L → λ (36)

for arbitrary 0 < λ < ∞. Intuitively we expect that the distribution of
N(h, L) converges to Poisson(λ) in this regime, but for our purposes it will
suffice to prove the second moment result

EN2(h, L) → λ2 + λ in the limit regime (36). (37)

Defering the proof of (37), Proposition 12 can be deduced from the ingredi-
ents above. Set

h = h(s) = s−1/8, L = L(s) = s3/8

and consider orders of magnitude as s ↓ 0. The numerator in (34) is Ω(1) by
(35) and (37). And by (32) and (33) we see that δ(h, s) is order hs1/2 = s3/8,
so the denominator in (34) is order s3/8, establishing the Proposition.

Proof of (37). The formula for the second moment is given as (38) be-
low. The term EN(h, L) arises from individual crossings, and the term
(EN(h, L))2 is the contribution from pairs of virtual crossing positions in
[0, L] for which the 4 end-points are all distinct. The integral term is the
contribution from the case of two virtual crossing positions in [0, L] with an
end-point in common, say at (x0,−y0) where y0 > 0. This term involves the
region A(x0,−y0) containing the possible positions of a friend of (x0,−y0)
for which the virtual crossing position is in [0, L]. Figure 5 shows this region,
for a particular value of (x0,−y0). The integrand

1
2(area A(x0,−y0))2 is the

mean (conditioned on a point at (x0,−y0)) number of pairs of friends for
which both virtual crossing positions (from friend to (x0,−y0)) are in [0, L].
This leads to the formula

EN2(h, L) = EN(h, L) + (EN(h, L))2 +2

� �

B

1
2(area A(x0,−y0))

2 dx0dy0.

(38)
We integrate over the region B of values for (x0,−y0) which are consistent
with a virtual crossing position in [0, L]. This region B can be decomposed
as the union of four regions B0, B�

1, B
r

1, B2 as shown in Figure 6, wherein we
are assuming h > L/2.
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0 L = 10

(x0,−y0) = (8,−5)

A(x0,−y0)

y = 0

y = h

Figure 5. The region A(x0,−y0) for the point •.

0 L

B0

Br

1B�

1

B2

y = 0

y = −h

Figure 6. The decomposition of the region of points consistent with a virtual

crossing position in [0, L].

For (x0,−y0) ∈ Br

1, the case shown in Figure 5, the region A(x0,−y0) is
the trapezoid bounded by the line y = 0, the line y = h, the line of slope
−1 through (x0,−y0) and the line through (x0,−y0) and (L, 0). A brief
calculation shows

area A(x0,−y0) =
1
2

�
1 + L−x0

y0

� �
(h+ y0)

2 − y20
�

for (x0,−y0) ∈ Br

1.

Easier calculations show

area A(x0,−y0) = (h+ y0)
2 − y20 for (x0,−y0) ∈ B0.
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area A(x0,−y0) =
L

2y0

�
(h+ y0)

2 − y20
�

for (x0,−y0) ∈ B2.

The case B�

1 is symmetric with Br

1. We could calculate EN2(h, L) exactly
using (38), but we only need an upper bound. The formulas above show that,
as x0 varies for fixed y0, the quantity “area A(x0,−y0)” takes its maximum
value on B0 or B2, and so

area A(x0,−y0) ≤
�
(h+ y0)

2 − y20
�
min(1, L

2y0
).

So the integral term in (38) is bounded by

�
h

0
(L+ 2y0)

��
(h+ y0)

2 − y20
�
min(1, L

2y0
)
�2

dy0.

The integral over 0 < y0 < L/2 works out as 3
4h

4L2 + 5
6h

3L3 + 7
24h

2L4. The
integral over L/2 < y0 < h works out as 7

2h
4L2− 1

4h
3L3− 3

4h
2L4+(12L

2h4+
L3h3) log(2h/L). So in the limit regime (36), the leading term is the term
1
2L

2h4 log(2h/L). But this term → 0, establishing (37).

7 Lower bounds on Ψworst
based on local optimality

One can get lower bounds on Ψworst by choosing any configuration of cities
and lower bounding the network length required for a network on that par-
ticular configuration to have a given stretch. There are heuristic reasons
(and the Steiner constant results mentioned at the start of section 3) to
suspect that some kinds of regular configurations (rather than typical ran-
dom configurations) are close to worst-case, so it is not unreasonable to
use regular configurations to obtain lower bounds on worst-case behavior.
This allows us to work directly on the infinite plane, because the regular
configurations we use have known average number of points per unit area.

Consider, for instance, the “square grid” configuration of cities at the
points {(i, j);−∞ < i, j < ∞}. The usual “square lattice” network (roads
between city pairs (v, w) at distance 1) has normalized length = 2 and
stretch =

√
2. It is natural to conjecture this network is optimal, in the

following sense.

Conjecture 13 If a network on the square grid configuration has stretch
≤

√
2 then its normalized length is at least 2.

If true, this would imply Ψworst(
√
2 − 1) ≥ 2. Similarly, any result of the

type
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