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Abstract

For many applications it is useful to sample from a finite set of objects in accordance with
some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic)
Markov chain whose stationary distribution is the desired distribution on this set; after the
Markov chain has run for M steps, with M sufficiently large, the distribution governing the state
of the chain approximates the desired distribution. Unfortunately it can be difficult to determine
how large M needs to be. We describe a simple variant of this method that determines on its
own when to stop, and that outputs samples in exact accordance with the desired distribution.
The method uses couplings, which have also played a role in other sampling schemes; however,
rather than running the coupled chains from the present into the future, one runs from a distant
point in the past up until the present, where the distance into the past that one needs to go
is determined during the running of the algorithm itself. If the state space has a partial order
that is preserved under the moves of the Markov chain, then the coupling is often particularly
efficient. Using our approach one can sample from the Gibbs distributions associated with
various statistical mechanics models (including Ising, random-cluster, ice, and dimer) or choose
uniformly at random from the elements of a finite distributive lattice.

1. Introduction

There are a number of reasons why one might want a procedure for generating a combinatorial
object “randomly”; for instance, one might wish to determine statistical properties of the class as
a whole, with a view towards designing statistical tests of significance for experiments that give
rise to objects in that class, or one might wish to determine the generic properties of members of a
large finite class of structures. One instance of the first sort of motivation is the work of Diaconis
and Sturmfels on design of chi-squared tests for arrays of non-negative integers with fixed row-
and column-sums [21]; instances of the second sort of motivation are seen in the work of the first
author and others on domino tilings [35] [45] and in the vast literature on Monte Carlo simulations
in physics (Sokal gives a survey [51]).

In many of these cases, it is possible to devise an ergodic (i.e., irreducible and aperiodic) Markov
chain (e.g., the Metropolis-Hastings Markov chain) on the set of objects being studied, such that
the steady-state distribution of the chain is precisely the distribution 7 that one wishes to sample
from (this is sometimes called “Markov chain Monte Carlo”). Given such a Markov chain, one can
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start from any particular probability distribution p, even one that is concentrated on a single state
(that is, a single object in the set), and approach the desired distribution arbitrarily closely, simply
by running the chain for a sufficiently long time (say for M steps), obtaining a new probability
distribution p™. The residual initialization bias after one has run the chain for M steps is defined
as the total variation distance ||pM —7||,i.e., as £ 3, |pM (i) = 7(4)|, or equivalently as the maximum
of |pM(E) — n(E)| over all measurable events E; for more background on this and other basic facts
about Markov chains, see [18] or [5]. Even if one is willing to settle for a small amount of bias
in the sample, there is a hidden difficulty in the Markov chain Monte Carlo method: there is no
simple way to determine a priori how big M must be to achieve |[p™ — || < ¢ for some specified
e > 0. Recently there has been much work at analyzing the rates of convergence of Markov chains
[18] [34] [20] [43] [50] [19] [48] but this remains an arduous undertaking. Thus, an experimenter
who is using such random walk methods faces the risk that the Markov chain has not yet had time
to equilibrate, and that it is exhibiting metastable behavior rather than true equilibrium behavior.

In section 2 we present an alternative approach, applicable in a wide variety of contexts, in
which many Monte Carlo algorithms (some of them already in use) can be run in such a manner
as to remove all initialization bias. Our scheme in effect uses the Markov chain in order to get
an estimate of its own mixing time (cf. the work of Besag and Clifford [10], who use a Markov
chain to assess whether or not a given state was sampled from 7, while requiring and obtaining
no knowledge of the Markov chain’s mixing time). Our main tools are couplings, and the main
ideas that we apply to them are simulation from the past and monotonicity. A coupled Markov
chain has states that are ordered pairs (or more generally k-tuples) of states of the original Markov
chain, with the property that the dynamics on each separate component coincide with the original
Markov dynamics. The versatility of the coupling method lies in the amount of freedom one has in
choosing the statistics of the coupling (see [42] for background on couplings).

Our approach is to simulate the Markov chain by performing random moves until some prede-
termined amount of time has elapsed, in the hope that all the states will “coalesce” in that time; if
they do, we can output the resulting coalescent state as our sample. If the states have not coalesced,
then we restart the chain further back in time, prepending new random moves to the old ones. We
show that if enough moves are prepended, eventually the states will coalesce, and the result will be
an unbiased random sample (subsection 2.1).

When the number of states in the Markov chain is large, the preceding algorithm is not feasible
exactly as described. However, suppose (as is often the case) that we can impose a partial ordering
on the state-space, and that not only do we have a Markov chain that preserves the probability
distribution that we are trying to sample from, but we also have a way of coupling this Markov
chain with itself that respects the partial ordering of the state-space under time-evolution. Then this
coupling enables us to ascertain that coalescence has occurred merely by verifying that coalescence
has occurred for the histories whose initial states were the maximal and minimal elements of the
state space (subsection 2.2). We call this the monotone Monte Carlo technique. Often there is a
unique minimal element and a unique maximal element, so only two histories need to be simulated.
(For a related approach, see [36].)

In the case of finite spin-systems, there are a finite number of sites and each state is a configu-
ration that assigns one of two spins (“up” or “down”) to every site, and so there is a natural partial
ordering with unique maximal and minimal elements. When the distribution 7 on the state-space
is attractive (a term we will define precisely in subsection 3.1), then the heat bath algorithm on
the spin-system preserves the ordering (compare with section II1.2 of [41]). In this situation, the
idea of simulating from the past and the monotone Monte Carlo technique work together smoothly
and lead to a procedure for exact sampling. One offshoot of this is that one can sample from the
uniform distribution on the set of elements of any finite distributive lattice (see subsection 3.2); this



is in fact a more useful class of applications than one might at first suppose, since many interesting
combinatorial structures can be viewed as elements of a distributive lattice in a non-obvious way
(see subsection 3.3 and [47]).

Section 4 contains our main applications, in which the desired distribution 7 is the Gibbs
distribution for a statistical mechanics model. A virtue of our method is that its algorithmic
implementation is merely a variant of some approximate sampling algorithms that are already in
use, and typically involves very little extra computational overhead. A dramatic illustration of
our approach is given in subsection 4.2, where we show (using a clever trick due to Fortuin and
Kasteleyn) that one can sample from the Gibbs distribution (see [51] and below) on the set of
states of a general ferromagnetic Ising model in any number of dimensions without being subject
to the “critical slowing down” that besets more straightforward approaches. Another strength of
our method is that it sometimes permits one to obtain “omnithermal samples” (see subsections 3.1
and 4.2) that in turn may allow one to get estimates of critical exponents (see below).

In section 5 we show how the expected running time of the algorithm can be bounded in terms
of the mixing time of the chain (as measured in terms of total variation distance). Conversely,
we show how data obtained by running the algorithm give estimates on the mixing time of the
chain. Such estimates, being empirically derived, are subject to error, but one can make rigorously
provable statements about the unconditioned likelihood of one’s estimates being wrong by more
than a specified amount. A noteworthy feature of our analysis is that it demonstrates that any
coupling of the form we consider is in fact an efficient coupling (in the sense of being nearly optimal).

It has not escaped our notice that the method of coupling from the past can be applied to the
problem (also considered in [7], [1], [44], and [3]) of randomly sampling from the steady state of a
Markov chain whose transition-probabilities are unknown but whose transitions can be simulated
or observed. This problem will be treated in two companion papers [61], [60].

2. General Theory
2.1. Coupling from the past

Suppose that we have an ergodic (irreducible and aperiodic) Markov chain with n states, numbered
1 through n, where the probability of going from state ¢ to state j is p; ;. Ergodicity implies that
there is a unique stationary probability distribution =, with the property that if we start the Markov
chain in some state and run the chain for a long time, the probability that it ends up in state ¢
converges to m(¢). We have access to a randomized subroutine Markov() which given some state
i as input produces some state j as output, where the probability of observing Markov(i) = j is
equal to p; ;; we will assume that the outcome of a call to Markov() is independent of everything
that precedes the call. This subroutine gives us a method for approximate sampling from the
probability distribution 7, in which our Markov-transition oracle Markov() is iterated M times
(with M large) and then the resulting state is output. For convenience, we assume that the start
and finish of the simulation are designated as time —M and time 0; of course this notion of time is
internal to the simulation being performed, and has nothing to do with the external time-frame in
which the computations are taking place. To start the chain, we use an arbitrarily chosen initial
state 2*:

i_pr — @ (start chain in state ¢* at time — M)
fort=—-M to -1
41 — Markov(i,)

return ?g



We call this fized-time forward simulation. Unfortunately, it can be difficult to determine what
constitutes a large enough M relative to any specified fidelity criterion. That is to say, if p denotes
the point-measure concentrated at state i*, so that p™ denotes the probability measure governing
io, then it can be hard to assess how big M needs to be so as to guarantee that ||p* — 7| is small.

We will describe a procedure for sampling with respect to « that does not require foreknowledge
of how large the cutoff M needs to be. We start by describing an approximate sampling procedure
whose output is governed by the same probability distribution p™ as M-step forward simulation,
but which starts at time 0 and moves into the past; this procedure takes fewer steps than fixed-time
forward simulation when M is large. Then, by removing the cutoff M — by effectively setting it
equal to infinity — we will see that one can make the simulation output state ¢ with probability
exactly 7(7), and that the expected number of simulation steps will nonetheless be finite. (Issues
of efficiency will be dealt with in section 5 of our article, in the case where the Markov chain is
monotone; for an analysis of the general case, see our article [61], in which we improve on the naive
approach just discussed.)

To run fixed-time simulation backwards, we start by running the chain from time —1 to time
0. Since the state of the chain at time —1 is determined by the history of the chain from time — M
to time —1, that state is unknown to us when we begin our backwards simulation; hence, we must
run the chain from time —1 to time 0 not just once but n times, once for each of the n states of the
chain that might occur at time —1. That is, we can define a map f_; from the state space to itself,
by putting f_1(¢) = Markov(i) for ¢ = 1,...,n. Similarly, for all times ¢ with —M <t < —1, we
can define a random map f; by putting fi(¢) = Markov(?) (using separate calls to Markov() for
each time t); in fact, we can suppress the details of the construction of the f;’s and imagine that
each successive f; is obtained by calling a randomized subroutine RandomM ap() whose values are
actually functions from the state space to itself. The output of fixed-time simulation is given by
F°,,(i*), where Fff is defined as the composition f;,—1 0 fi,—00---0 fr410 fi,.

If this were all there were to say about backward simulation, we would have incurred a substan-
tial computational overhead (vis-a-vis forward simulation) for no good reason. Note, however, that
under backward simulation there is no need to keep track of all the maps f; individually; rather, one
need only keep track of the compositions F?, which can be updated via the rule F = Ft0-|-1 o f;. More
to the point is the observation that if the map F} ever becomes a constant map, with F2(¢) = FP(i')
for all 4,4, then this will remain true from that point onward (that is, for all earlier ¢’s), and the
value of F, (i*) must equal the common value of F{() (1 < < n); there is no need to go back to
time —M once the composed map F} has become a constant map. When the map F} is a constant
map, we say coalescence occurs from time ¢ to time 0, or more briefly that coalescence occurs from
time {. Backwards simulation is the procedure of working backward until —¢ is sufficiently large
that F? is a constant map, and then returning the unique value in the range of this constant map; if
M was chosen to be large, then values of ¢ that occur during the backwards simulation will almost
certainly have magnitude much smaller than M.

We shall see below that as ¢ goes to —oo, the probability that the map F} is a constant map
increases to 1. Let us suppose that the p; ;’s are such that this typically happens with ¢ & —1000. As
a consequence of this, backwards simulation with M equal to one million and backwards simulation
with M equal to one billion, which begin in exactly the same way, nearly always turn out to
involve the exact same simulation steps (if one uses the same random numbers); the only difference
between them is that in the unlikely event that FELOOO,OOO is not a constant map, the former
algorithm returns the sample FEI,OOO,OOO(i*) while the latter does more simulations and returns the
sample F91,000,000,000(i*)-

We now see that by removing the cut-off M, and running the backwards simulation into the
past until £ is constant, we are achieving an output-distribution that is equal to the limit, as



M goes to infinity, of the output-distributions that govern fixed-time forward simulation for M
steps. However, this limit is equal to . Hence backwards simulation, with no cut-off, gives a
sample whose distribution is governed by the steady-state distribution of the Markov chain. This
algorithm may be stated as follows:

t—0
F? « the identity map
repeat
t—1t-1
fi — RandomM ap()
FY — t0-|-1 o fe
until FP(.) is constant

return the unique value in the range of FP(-)

We remark that the procedure above can be run with O(n) memory, where n is the number of
states. The number of calls to Markov() may also be reduced, and in a companion paper [61] we
will show that the procedure can be modified so that its expected running time is bounded by a
fixed multiple of the so-called cover time of the Markov chain (for a definition see [44]).

Theorem 1 With probability 1 the coupling-from-the-past protocol returns a value, and this value
1s distributed according to the stationary distribution of the Markov chain.

Proof: Since the chain is ergodic, there is an L such that for all states ¢ and j, there is a

positive chance of going from ¢ to j in L steps. Hence for each ¢, F}_;(-) has a positive chance

of being constant. Since each of the maps F, (), F__QLL(-), ... has some positive probability ¢ > 0

of being constant, and since these events are independent, it will happen with probability 1 that
one of these maps is constant, in which case F,, is constant for all sufficiently large M. When
the algorithm reaches back M steps into the past, it will terminate and return a value that we will

call F(ioo. Note that I

oo 18 Obtained from F:io by running the Markov chain one step, and that

F(ioo and F:io have the same probability distribution. Together these last two assertions imply

that the output F(i is distributed according to the unique stationary distribution =. O

o0

In essence, to pick a random element with respect to the stationary distribution, we run the
Markov chain from the indefinite past until the present, where the distance into the past we have
to look is determined dynamically, and more particularly, is determined by how long it takes for n
runs of the Markov chain (starting in each of the n possible states, at increasingly remote earlier
times) to coalesce.

In this set-up, the idea of simulating from the past up to the present is crucial; indeed, if we
were to change the procedure and run the chain from time 0 into the future, finding the smallest
M such that the value of F}(z) is independent of  and then outputting that value, we would
obtain biased samples. To see this, imagine a Markov chain in which some states have a unique
predecessor; it is easy to see such states can never occur at the exact instant when all n histories
coalesce.

It is sometimes desirable to view the process as an iterative one, in which one successively starts
up n copies of the chain at times —1, —2, etc., until one has gone sufficiently far back in the past
to allow the different histories to coalesce by time 0. However, when one adopts this point of view



(and we will want to do this in the next subsection), it is important to bear in mind that the
random bits that one uses in going from time ¢ to time ¢ 4+ 1 must be the same for the many sweeps
one might make through this time-step. If one ignores this requirement, then there will in general
be bias in the samples that one generates. The curious reader may verify this by considering the
Markov chain whose states are 0, 1, and 2, and in which transitions are implemented using a fair
coin, by the rule that one moves from state ¢ to state min(¢ + 1, 2) if the coin comes up heads and
to state max(7 — 1,0) otherwise. It is simple to check that if one runs an incorrect version of our
scheme in which entirely new random bits are used every time the chain gets restarted further into
the past, the samples one gets will be biased in favor of the extreme states 0 and 2.

We now address the issue of independence of successive calls to Markov() (implicit in our
calls to the procedure RandomMap()). Independence was assumed in the proof of Theorem 1 in
two places: first, in the proof that the procedure eventually terminates, and second, in the proof
that the distribution governing the output of the procedure is the steady-state distribution of the
chain. The use of independence is certainly inessential in the former setting, since it is clear that
there are better ways to couple Markov chains than independently, if one’s goal is to achieve rapid
coalescence. The second use of independence can also be relaxed; what matters is that the random
decisions made in updating the coupled chain from time ¢ to time ¢ are independent of the state of
the chain at time ¢. This will be guaranteed if the random decisions made in updating from time
t to time t + 1 are independent of the random decisions made at all other times. Dependencies
among the decisions made at a fixed time are perfectly legitimate, and do not interfere with this
part of the proof. To treat possible dependencies, we adopt the point of view that fi(¢), rather
than being given by Markov(7), is given by ¢(7, U;) where ¢(-,-) is a deterministic function and Uy
is a random variable associated with time t. We assume that the random variables ..., U_5, U_4
are i.i.d., and we take the point of view that the random process given by the U’s is the source
of all the randomness used by our algorithm, since the other random variables are deterministic
functions of the Uy’s. Note that this framework includes the case of full independence discussed
earlier, since for example one could let the Uy’s be i.i.d. variables taking their values in the n-cube
[0,1]" with uniform distribution, and let ¢(z,u) be the smallest j such that p;1 + pi2 + -+ pij
exceeds the ith component of the vector wu.

Theorem 2 Let...,U_3,U_3,U_q bei.i.d. random variables and ¢(-,-) be a deterministic function
with the property that for all i, Prob[¢(i,U_1) = j] = p;;. Define fi(i) = ¢(i,U;) and FP = f_q 0
f_g0---0fi. Assume that with probability 1, there existst for which the map FY is constant, with a
constant value that we may denote by ¢(...,U_o,U_1). Then the random variable ¢(...,U_q,U_1),
which is defined with probability 1, has distribution governed by «.

Rather than give a proof of the preceding result, we proceed to state and prove a more general
result, whose extra generality, although not significant mathematically, makes it much closer to
procedures that are useful in practice. The point of view here is that one might have several
different Markovian update-rules on a state-space, and one might cycle among them. As long as
each one of them preserves the distribution 7, then the same claim holds.

Theorem 3 Let...,U_3,U_3,U_q be i.i.d. random variables and let ¢.(-,-) (t < 0) be a sequence
of deterministic functions with the property that for allt and j,

> 7 (i)Problgu(i, U) = j] = 7(j).

Define fi(i) = ¢y(¢,Uy) and FP = f_y0f_g0---0fi. Assume that with probability 1, there existst for
which the map FY is constant, with a constant value that we may denote by ¢(...,U_,U_1). Then



the random variable ¢(...,U_3,U_1), which is defined with probability 1, has distribution governed
by 7.

Proof: Let X be a random variable on the state-space of the Markov chain governed by the
steady-state distribution 7, and for all ¢ < 0 let Y; be the random variable FY(X). Each ¥; has
distribution 7, and the sequence Y_1,Y 5, Y 5, ... converges almost surely to some state Y_,
which must also have distribution 7. Put ¢(...,U_2,U_1) = Y_... O

We conclude this section by discussing two related ideas that appear in the published literature,
and that were brought to our attention during the writing of this article.

The first is the method for generating random spanning trees of finite graphs due to Broder [15]
and Aldous [4] in conversations with Persi Diaconis. In this method one does a primary random
walk on the graph and “shadows” it with a secondary random walk on the set of spanning trees.
The secondary walk is coalescent in the sense that if the primary walk visits all vertices of the graph,
then the final state of the secondary walk is independent of its initial state. Thus we can apply
coupling-from-the-past to get a random spanning tree, while following only a single history rather
than the usual two histories in the monotone version of the method. The Broder-Aldous algorithm
uses the fact that the simple random walk on a graph is reversible, and terminates in finite time
with a random tree. Using the coupling-from-the-past approach rather than time-reversal, we can
generalize this algorithm to yield random trees in a directed and weighted graph. Details will be
given in [61]. (It is worth mentioning that for purposes of generating random trees, one can now
do better than the Broder-Aldous algorithm; see [60].)

Time reversal also shows up in the theory of coalescent duality for interacting particle systems. A
standard example of this duality is the relationship between the coalescing random walk model and
the voter model generalized to weighted directed graphs (see [32], [27], [41]). Given a continuous-
time Markov chain on n states, in which transitions from state ¢ to state j occur at rate p; ;, one
defines a “coalescing random walk” by placing a particle on each state and decreeing that particles
must move according to the Markov chain statistics; particles must move independently unless they
collide, at which point they must stick together. The original Markov chain also determines a voter
model, in which each of n voters starts by wanting to be be the leader, but in which voter ¢ decides
to adopt the current choice of voter j at rate p; ;, until all voters eventually come into agreement
on their choice of a leader. These two models are dual to one another, in the sense that each can
be obtained from the other by simply reversing the direction of time (see [5]). As a corollary of the
work above, the probability that voter ¢ ends up as the leader is just the steady-state probability
of state 7 in the original Markov chain.

2.2. Monotone Monte Carlo

Suppose now that the (possibly huge) state space S of our Markov chain admits a natural partial
ordering <, and that our update rule ¢ has the property that z < y implies ¢(z,Uy) < é(y, Up)
almost surely with respect to Uy. Then we say that our Markov chain gives a monotone Monte
Carlo algorithm for approximating =. We will suppose henceforth that § has elements 0, 1 with
0<z<lforalazes.

Define ®2(z,u) = ¢r,—1(bra—2(. .- (Pe, (¥, U, )y Ugyg1)s - - o, Uiy—2), Ugy—1 ), Where u is short for
(«.o,u_1,up). f u_g,u_741,...,u_2,u_q have the property that <I>(1T(O, u) = ‘I)QT(L u), then the
monotonicity property assures us that ®° (2, u) takes on their common value for all € 5. This
frees us from the need to consider trajectories starting in all |S| possible states; two states will
suffice. Indeed, the smallest T for which ®°,.(-,u) is constant is equal to the smallest 7' for which



Let T, denote this smallest value of T'. It would be possible to determine T, exactly by a bisection
technique, but this would be a waste of time: an overestimate for T, is as good as the correct value,
for the purpose of obtaining an unbiased sample. Hence, we successively try T'=1,2,4,8,... until
we find a T of the form 2% for which ®°,(0,u) = ®°,(1,u). The number of simulation-steps
involved is 2(1 +24+4+---+ 2’“) < 2k+2, where the factor of 2 in front comes from the fact that
we are simulating two copies of the chain (one from 0 and one from 1). However, this is close to
optimal, since T, must exceed 2*~! (otherwise we would not have needed to go on to try T = 2F);
that is, the number of simulation steps required merely to verify that <I>(1T*(O,u) = <I>(1T*(i,u) is
greater than 2-25~1 = 2% Hence our double-until-you-overshoot procedure comes within a factor of
4 of what could be achieved by a clairvoyant version of the algorithm in which one avoids overshoot.

Here is the pseudocode for our procedure.

T—1

repeat
upper — 1
lower — 0

fort=-T to —1
upper — ¢,(upper, u;)
lower — ¢y(lower, uy)
T 2T
until upper = lower

return upper

Implicit in this pseudocode is the random generation of the u;’s. Note that when the random
mapping ¢(-,us) is used in one iteration of the repeat loop, for any particular value of ¢, it is
essential that the same mapping be used in all subsequent iterations of the loop. We may accomplish
this by storing the u;’s; alternatively, if (as is typically the case) our u;’s are given by some pseudo-
random number generator, we may simply suitably reset the random number generator to some
specified seed seed(i) each time ¢ equals —2°.

In the context of monotone Monte Carlo, a hybrid between fixed-time forward simulation and
coupling-from-the-past is a kind of adaptive forward simulation, in which the monotone coupling
allows one to check that the fixed time M that has been adopted is indeed large enough to guarantee
mixing. This approach was foreshadowed by the work of Valen Johnson [36], and it has been used
by Kim, Shor, and Winkler [38] in their work on random independent subsets of certain graphs;
see subsection 3.3. Indeed, if one chooses M large enough, the bias in one’s sample can be made as
small as one wishes. However, it is worth pointing out that for a small extra price in computation
time (or even perhaps a saving in computation time, if the M one chose was a very conservative
estimate of the mixing time), one can use coupling-from-the-past to eliminate the initialization bias
entirely.

In what sense does our algorithm solve the dilemma of the Monte Carlo simulator who is not
sure how to balance his need to get a reasonably large number of samples and his need to get
unbiased samples? We will see below that the expected run time of the algorithm is not much
larger than the mixing time of the Markov chain (which makes it fairly close to optimal), and that
the tail distribution of the run time decays exponentially quickly. If one is willing to wait for the
algorithm to return an answer, then the result will be an unbiased sample. More generally, if one
wants to generate several samples, then as long as one completes every run that gets started, all



of the samples will be unbiased as well as independent of one another. Therefore, we consider our
approach to be a practical solution to the Monte Carlo simulator’s problem of not knowing how
long to run the Markov chain.

We emphasize that the experimenter must not simply interrupt the current run of the procedure
and discard its results, retaining only those samples obtained during earlier runs; the experimenter
must either allow the run to terminate or else regard the final sample as indeterminate (or only
partly determined) — or resign himself to contaminating his set of samples with bias. To reduce
the likelihood of ending up in this dilemma, the experimenter can use the techniques of section 5.1
to estimate in advance the average number of Markov chain steps that will be required for each
sample.

Recently Jim Fill has found an interruptible exact sampling protocol. Such a protocol, when
allowed to run to completion, returns a sample distributed according to m, just as coupling-from-
the-past does. Additionally, if an impatient user interrupts some runs, then rather than regarding
the samples as indeterminate, the experimenter can actually throw them out without introducing
bias. This is because the run time of an interruptible exact sampling procedure is independent of
the sample returned, and therefore independent of whether or not the user became impatient and
aborted the run.

As of yet there remain a number of practical issues that need to be resolved before a truly
interruptible exact sampling program can be written. We expect that Fill and others will discuss
these issues more thoroughly in future articles.

3. Spin Systems and Distributive Lattices
3.1. Attractive spin systems

Define a spin system on a vertex set V as the set of all ways of assigning a spin o(¢) (“up” or
“down”) to each of the vertices ¢ € V', together with a probability distribution 7 on the set of such
assignments o(-). We order the set of configurations by putting ¢ > 7 iff o(¢) > 7(¢) for all : € V
(where 1>]), and we say that 7 is attractive if the conditional probability of the event o(i) =1 is a
monotone increasing function of the values of o(j) for j # . (In the case of the Ising model, this
corresponds to the ferromagnetic situation.)

More formally, given ¢ € V and configurations o,7 with o(j) < 7(j) for all j # ¢, define
configurations oy, o|, 71, and 7| by putting o(¢) =1, o1(j) = o(j) for all j # 7, and so on. We say
7 is monotone iff 7(¢|)/7(01) > n(1))/7(7}), or rather, if x(o))n(7y) > 7(op)7(7)), for all ¢ < 7
and all z € V.

A heat bath algorithm on a spin-system is a procedure whereby one cycles through the vertices
i (using any mixture of randomness and determinacy that guarantees that each ¢ almost surely
gets chosen infinitely often) and updates the value at site 7 in accordance with the conditional
probability for 7. One may concretely realize this update rule by putting

fiors ) = {Ul ifu; < m(01)/(nlen) + (o))
) op ifu > 7(o))/(w(o)) + n(07))

where ¢ is the time, u; is some random variable distributed uniformly in [0, 1] (with all the u,’s
independent of each other), and o is some configuration of the system. If 7 is attractive, then this
realization of m gives rise to a coupling-scheme that preserves the ordering (just use the same u;’s
in all copies of the chain). To see why this is true, notice that if ¢ < 7, then the u;-threshold for o
is higher than for 7, so that the event fi(o,u)(¢) =1, fe(7,us)(i) =] is impossible.

We now may conclude:



Theorem 4 If one runs the heat bath for an attractive spin-system under the coupling-from-the-
past protocol, one will generate states of the system that are exactly governed by the target distri-
bution 7.

In certain cases this method is slow (for instance, if one is sampling from the Gibbs distribution
for the Ising model below at the critical temperature), but in practice we find that it works fairly
quickly for many attractive spin-systems of interest. In any case, section 5 will show that in a
certain sense the coupling-from-the-past version of the heat bath is no slower than heat bath.

We point out that, like the standard heat bath algorithm, ours can be accelerated if one updates
many sites in parallel, provided that these updates are independent of one another. For instance,
in the case of the Ising model on a square lattice, one can color the sites so that black sites have
only white neighbors and vice versa, and it then becomes possible to alternate between updating
all the white sites and updating all the black sites. In effect, one is decomposing the configuration
o as a pair of configurations oyhite and oplack, and one alternates between randomizing one of them
in accordance with the conditional distribution determined by the other one.

We also point out that in many cases, one is studying a one-parameter family of spin systems
in which some quantity such as temperature or the strength of an external field is varying. If some
parameter (say the temperature T') affects the ratio m7(oy) : 7(o}) in a monotone (say increasing)
way, then it is possible to make an “omnithermal” heat bath Markov chain, one that in effect
generates simultaneous random samples for all values of the temperature. An omnithermal state o
assigns to each vertex i the set ¢(7) of temperatures for which site ¢ is spin-down. The sets ¢(7) are
“monotone” in the sense that if a temperature is in ¢(7), so is every lower temperature; that is, when
the temperature is raised, spin-down sites may become spin-up, but not vice versa. Given a site ¢ of
configuration o and a random number u between 0 and 1, the heat bath update rule updates ¢(¢) to
be the set of T' for which u < wr(o7,)/(7r(oT,)) + 77(0T,1)), Wwhere o7 denotes o at temperature
T. For each T this update rule is just the ordinary heat bath, and monotonicity ensures that the
new set ¢(i) is monotone in the aforementioned sense. The omnithermal heat bath Markov chain
is monotone with a maximum and minimum state, so monotone coupling-from-the-past may be
applied.

In the case where all the spin sites are independent of one another, the trick of simultaneously
sampling for all values of a parameter has been used for some time in the theory of random graphs
[6, chapter 10] and percolation [28]. Holley [31] used an omnithermal Markov chain with two
temperatures to give an alternate proof of the FKG inequality [24] governing attractive spin systems.
More recently Grimmett has given a monotone omnithermal Markov chain for the bond-correlated
percolation model [29] (another name for the random cluster model described in subsection 4.2) and
used it to derive a number of properties about these systems. Interestingly, Grimmett’s Markov
chain is different from the omnithermal heat bath chain. See subsection 4.2 for further discussion
of omnithermal sampling and its uses.

3.2. Order ideals and antichains

Let P be a finite partially ordered set, and call a subset I of P an order ideal if for all x € I and
y < z, we have y € I. The set of order ideals of P is denoted by J(P); it is a distributive lattice
under the operations of union and intersection, and it is a standard theorem (see [52]) that every
finite distributive lattice is of the form J(P) for some finite partially ordered set P.

To turn J(P) into a spin-system, we let V' be the set of elements of P, and we associate the order
ideal I with the spin-configuration ¢ in which o(7) is | or | according to whether i € [ or i ¢ I.
Let us give each spin-configuration that arises in this fashion equal probability n(c) = 1/]|J(P)|,
and give the rest probability 0. Then it is easy to check that the ratio 7(oy)/7 (o)) is 1/0, 0/1, or
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1/1, according to whether o\ {7} is not an order ideal, ¢ U{i} is not an order ideal, or both sets are
order ideals. Indeed, it is not much harder to see that 7 is attractive, so that by running the heat
bath algorithm in a coupling-from-the-past framework, we can generate a uniform random element
of J(P).

We remind the reader that there is a one-to-one correspondence between order ideals of P and
antichains of P (sets of pairwise-incomparable elements of P); specifically, for every order ideal
I of P, the set of maximal elements of I forms an antichain, and every antichain determines a
unique order ideal I. Hence, sampling uniformly from the elements of a finite distributive lattice
is equivalent to sampling uniformly from the set of order ideals of a general finite poset, which is
in turn equivalent to sampling uniformly from the set of antichains of a general finite poset.

We also point out that the heat bath procedure can often be done in parallel for many ¢ € P at
once. Suppose we color the elements of P so that no element covers another element of the same
color. (If P is graded, then its Hasse diagram is bipartite and two colors suffice.) We use these
vertex-colors to assign colors to the edges of the Hasse diagram G of J(P). For definiteness, let us
focus on one color, called “red”. If I is an order ideal, and K is the set of all red elements of P
whose adjunction to or removal from I yields an order ideal, then a “red move” is the operation
of replacing I by the union of [\ K with a random subset of K. If one alternates red moves with
blue moves and so on, then one will converge to the uniform distribution on J(P).

Cautionary note: While in many cases of interest this procedure will quickly find a random
order ideal of a poset, it is not difficult to construct examples where the run time is very large.
For instance, let P be the poset of 2n elements numbered 1,...,2n, such that z < y if and only
if # < n < yin the standard order on the integers. Then the Hasse diagram G' of J(P) will be
two hypercubes joined at a single vertex, and the time for the upper and lower order ideals to
coalesce will be exponential in n. Note however, that because of the bottleneck in this graph, the
(uncoupled) random walk on this graph also takes exponential time to get close to random.

3.3. Combinatorial applications

In this section, we describe a few examples of combinatorial objects that can be sampled by means
of the techniques developed in this section. In the first two examples, there are other methods that
can be applied, but it is still interesting to see how versatile our basic approach is.

Lattice paths. First, consider the set of all lattice-paths of length a + b from the point («a,0)
to the point (0,b). There are (a:b) such paths, and there are a number of elementary techniques
that one can use in order to generate a path at random. However, let us define the number of
inversions in such a path as the number of times that an upward step is followed (not necessarily
immediately) by a leftward step, so that the path from («a,0) to (a,b) to (0,b) has ab inversions, and
let us decree that each lattice-path should have probability proportional to ¢ to the power of the
number of inversions, for some ¢ > 0. It so happens in this case that one can work out exactly what
the constant of proportionality is, because one can sum ¢# °f mversions oyer ]l lattice-paths with two
fixed endpoints (these are the coefficients of the so-called “Gaussian binomial coefficients” [52]),
and as a result of this there exists an efficient bounded-time procedure for generating a random
g-weighted lattice-path. However, one also has the option of making use of coupling-from-the-past,
as we now explain.

If we order the set of the unit squares inside the rectangle with corners (0,0), («,0),(0,b),(a,b)
by decreeing that the square with lower-left corner (¢/, ;") is less than or equal to the square with
lower-left corner (7, ) if and only if ¢/ < i and j' < j, then we see that the unit squares that lie
below and to the left of a lattice-path that joins (@, 0) and (0,b) form an order ideal, and that there
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is indeed a one-to-one-correspondence between the lattice-paths and the order ideals. Moreover,
the number of inversions in a lattice path corresponds to the cardinality of the order ideal, so the
order ideal I has probability proportional to ¢/l. It is not hard to show for any finite distributive
lattice, a probability distribution of this form is always attractive. Therefore, the method applies.
When ¢ = 1, roughly n®log n steps on average are needed in order to generate an unbiased sample,
where a = b = n; details will appear in [59].

Permutations. For certain statistical applications, it is useful to sample permutations = € .5,
on n items such that the probability of 7 is proportional to ¢™¥(7): this is sometimes called “Mallows’
phi model through Kendall’s tau”. For background see [37] and [18] and the references contained
therein. Recall that inv(7) denotes the number of inversions of 7, that is, the number of pairs (7, 7)
such that ¢ < j and 7(7) > 7(j). We represent the permutation 7 by the n-tuple [7(1),...,7(n)].

Consider the following Markov chain whose steady-state distribution is the aforementioned
distribution. Pick a random pair of adjacent items. With probability 1/(¢ + 1) put the two in
ascending order, i.e. “sort them”, and with probability ¢/(¢+ 1) put them in descending order, i.e.
“un-sort” them. It is clear that this Markov chain is ergodic and preserves the desired probability
distribution.

Define a partial order on 5, by 7 < o if and only if 7 can be obtained from ¢ by sorting
adjacent elements (this is called the weak Bruhat order [13]). The bottom element is the identity
permutation 0 : i — 7 and the top element is the totally reversing permutation 1 : i — n+ 1 — 1.
The above Markov chain is a random walk on the Hasse diagram of this partial order. (See [52] for
background on partially ordered sets.) This Markov chain, coupled with itself in the obvious way,
does not preserve the partial order, even on S5. However, it is still true that when the top and
bottom states coalesce, all states have coalesced, as we will show below. In symbols, the claim is
that Fff(ﬁ) = Fff(i) implies that Fff(-) is constant. Therefore the technique of coupling from the
past can be applied to this Markov chain.

The reason that the top and bottom states determine whether or not all states get mapped to
the same place is that suitable projections of the Markov chain are monotone. Given a permutation
7, let O (7) be an associated threshold function. That is, f5(7) is a sequence of 0’s and 1’s, with a
1 at location ¢ if and only 7(¢) > k. Just as the Markov chain sorts or un-sorts adjacent sites in a
permutation, it sorts or un-sorts adjacent sites in the 0-1 sequence. Indeed, these sequences of 0’s
and 1’s correspond to lattice-paths of the kind considered in the first example.

A sequence sy of 0’s and 1’s dominates another such sequence s, if the partial sums of sy are at
least as large as the partial sums of s, i.e., EZ'I:1 s1(e) > EZ'I:1 s9(t) for all 0 < I < n. The Markov
chain preserves dominance in sequences of 0’s and 1’s. This may be checked by case-analysis. For
each k, we have that if Hk(Fttf(O)) = Ok(Fff(i)), then Hk(Fttf(-)) is constant. But note that if
two permutations differ, then they must differ in some threshold function. Hence these threshold
functions determine the permutation, and Fff(-) must be constant if it maps 0 and 1 to the same
place.

Recently Felsner and Wernisch reported having generalized this monotone Markov chain to
sublattices of the weak Bruhat lattice. Given two permutations 7y and we with 71 < mg, the
random walk is restricted to those permutations ¢ such that 7y < ¢ < wy. This Markov chain can
be used to sample random linear extensions of a two-dimensional partially ordered set [22].

Independent sets. A natural way to try to apply the heat bath approach to generate a
random independent set in a graph G (that is, a subset no two of whose vertices are joined by an
edge) is first to color the vertices so that no two adjacent vertices are the same color, and then,
cycling through the color classes, replace the current independent set I by the union of I'\ K with
some random subset of K, where K is the set of vertices of a particular color that are not joined
by an edge to any vertex in /. It is simple to show that for any fixed color, this update operation
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preserves the uniform distribution on the set of independent sets, since it is nothing more than a
random step in an edge-subgraph whose components are all degree-regular graphs (hypercubes, in
fact). Since the composite mapping obtained by cycling through all the vertices gives an ergodic
Markov chain, there is at most one stationary distribution, and the uniform distribution must be
it.

Unfortunately, we do not know of any rigorous estimates for the rate at which the preceding
algorithm gives convergence to the uniform distribution, nor do we know of a way to use coupling-
ideas to get empirical estimates of the mixing time. However, in the case where (G is bipartite, a
pretty trick of Kim, Shor, and Winkler [38] permits us to apply our methods. Specifically, let us
suppose that the vertices of G have been classified as white and black, so that every edge joins
vertices of opposite color. If we write the independent set I as Iyhjte U Iplack, then the set of
independent sets becomes a distributive lattice if one defines the meet of I and I’ as (Iyhite N
Il i) U (black U Iy, ) and their join as (Lwhite U Llpi00) U (Iblack N I}, )- Hence one can sample
from the uniform distribution on the set of independent sets in any finite bipartite graph.

This Markov chain may be slowly mixing for some graphs; for instance, in the case of the
complete bipartite graph on n + n vertices, the Markov chain is isomorphic to the slowly-mixing
Markov chain mentioned in our earlier cautionary note. Kim, Shor, and Winkler consider a variant
in which the different independent sets I need not have equal probability, but have probabilities
proportional to ¢lfl. For values of ¢ below a certain critical threshold, they found that rapid coupling
takes place; our methods would be applicable to the generation of random independent sets in the
sub-critical regime.

4. Applications to Statistical Mechanics

When a physical system is in thermodynamic equilibrium, the probability that the system is in
a given state ¢ is proportional to e=#</¥1 where FE, is the energy of state o, T' is the absolute
temperature, and k is Boltzmann’s constant. This probability distribution is known as the Gibbs
distribution. In effect, kT is the standard unit of energy; when k7T is large, the energies of the
states are not significant, and all states are approximately equally likely, but when £T is small, the
system is likely to be in a low-energy state. In some cases, a very small change in some parameter
(such as the temperature) causes a significant change in the physical system. This phenomenon
is called a phase transition. If changing the temperature caused the phase transition, then the
temperature at the phase transition is called the critical temperature.

In the study of phase transitions, physicists often consider idealized models of substances.
Phase-transition phenomena are thought to fall into certain universality classes, so that if a sub-
stance and a model belong to the same universality class, the global properties of the model corre-
spond well to those of the real-world substance. For example, carbon dioxide, xenon, and brass are
thought to belong to the same universality class as the three-dimensional Ising model (see [8] and
[12] and references contained therein). Other models that have received much attention include the
Potts model [63] (which generalizes the Ising model) and the related random cluster model [23].

In Monte Carlo studies of phase transitions, it is essential to generate many random samples of
the state of a system. Sampling methods include the Metropolis algorithm and multi-grid versions
of it. However, even after the Markov chain has run for a long time, it is not possible to tell by mere
inspection whether the system has converged to a steady-state distribution or whether it has merely
reached some metastable state. In many cases, we can use the method of coupled Markov chains
to eliminate this problem and provide samples precisely according to the steady-state distribution.

In subsection 4.1 we review the definition of the Ising model and describe a simple algorithm
for obtaining unbiased Ising samples that works well if the system is above (and not too close to)
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the critical temperature. We also define the Potts model, which generalizes the Ising model to the
situation in which there are more than two possible spins.

In subsection 4.2 we consider the random cluster model. This model turns out to be very useful,
in large part because random Ising and Potts states can be derived from random-cluster states. In
many cases the best way to get Ising or Potts states is via the random cluster model. We show how
to apply the method of monotone coupling-from-the-past to get unbiased samples, and include a
picture of a perfectly equilibrated Ising state obtained by this method (Figure 1).

Finally, in subsection 4.3 we show how to apply our methods to the square ice model and the
dimer model on the square and honeycomb grids.

We also mention that interest in these models is not restricted to physicists. For instance, in
image processing, to undo the effects of blurring and noise one may place a Gibbs distribution on
the set of possible images. The energy of a possible image depends on the observed pixel values, and
nearby pixels tend to have similar values. Sampling from this Gibbs distribution can be effective
in reducing noise. See [26] and [9] for more information.

4.1. The Ising model

Here we introduce the Ising model and the single-site heat bath algorithm for sampling from it.
The efficiency of the heat bath algorithm has been the object of much study [56] [53] [25] [33] [49]
[46]. To summarize, it runs quickly at temperatures above the critical temperature, but below this
temperature it takes an enormously long time to randomize. (In subsection 4.2 we will describe a
different algorithm which does not suffer from this “critical slowing down”; however, that algorithm
does not apply when different parts of the substance are subjected to magnetic fields of different
polarity, which makes that algorithm less suitable for some applications, such as image processing.)

The Ising model was introduced to model ferromagnetic substances; it is also equivalent to
a lattice gas model [8]. An Ising system consists of a collection of n small interacting magnets,
possibly in the presence of an external magnetic field. FEach magnet may be aligned up or down.
(In general there are more directions that a magnet may point, but in crystals such as FeCly and
FeCOs3 there are in fact just two directions [8].) Magnets that are close to each other prefer to be
aligned in the same direction, and all magnets prefer to be aligned with the external magnetic field
(which sometimes varies from site to site, but is often constant). These preferences are quantified
in the total energy F of the system

FE=- E Q; ;0,05 — E Bo;,
7

<J

where B; is the strength of the external field as measured at site i, o; is 1 if magnet ¢ is aligned
up and —1 if magnet ¢ is aligned down, and a;; > 0 represents the interaction strength between
magnets ¢ and 7j.

Often the n magnets are arranged in a 2D or 3D lattice, and «; ; is 1 if magnets 7 and j are
adjacent in the lattice, and 0 otherwise.

Characterizing what the system looks like at a given temperature is useful in the study of
ferromagnetism. To study the system, we may sample a random state from the Gibbs distribution
with a Markov chain. The single-site heat bath algorithm, also known as Glauber dynamics, iterates
the following operation: Pick a magnet, either in sequence or at random, and then randomize its
alignment, holding all of the remaining magnets fixed. There are two possible choices for the next
state, denoted by oy and o, with energies F; and E|. We have Prob[a;]/Probla|] = e~ (F1=EI/FT =
e~ (AE)/ET  Thyg a single update is simple to perform, and it is easy to check that this defines an
ergodic Markov chain for the Gibbs distribution.
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Figure 1: An equilibrated Ising state at the critical temperature on a 4200 x 4200 toroidal grid.
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To get an exact sample, we make the following observation: If we have two spin-configurations
o and 7 with the property that each spin-up site in o is also spin-up in 7, then we may evolve both
configurations simultaneously according to the single-site heat bath algorithm, and this property
is maintained. The all-spins-up state is “maximal”, and the all-spins-down state is “minimal”, so
we have a monotone Markov chain to which we can apply the method of coupling from the past.
Indeed, this is just a special case of our general algorithm for attractive spin-systems.

It is crucial that the a;;’s be non-negative; if this were not the case, the system would not be
attractive, and our method would not apply. (A few special cases, such as a paramagnetic system
on a bipartite lattice, reduce to the attractive case.) However, there are no additional constraints
on the a;;’s and the B;’s; once the system is known to be attractive, we can be sure that our
method applies, at least in a theoretical sense.

Also note that we can update two spins in parallel if the corresponding sites are non-adjacent
(i.e., if the associated «; ; vanishes), because the spin at one such site does not affect the conditional
distribution for the spins at another. For instance, on a square grid, we can update half of the
spins in parallel in a single step, and then update the other half at the next step. Despite the
speed-up available from parallelization, there is no guarantee that the heat bath Markov chain will
be a practical one. Indeed, it is well-known that it becomes disastrously slow near the critical
temperature.

An important generalization of the Ising model is the g-state Potts model, in which each site
may have one of ¢ different “spins”. Wu [63] gives a survey describing the physical significance of
the Potts model. In a Potts configuration o, each site ¢ has spin o; which is one of 1,2,3,... 4.
The energy of a Potts configuration is

E= Eam‘(l = boi0,) + ZBi(l — boie)s
1<J 7

where 6 is the Kronecker delta-function, equal to 1 if its subscripts are equal and 0 otherwise,
a;; > 0 is the interaction strength between sites ¢ and j, B; is the strength of the magnetic field
at site ¢, and e; is the polarity of the magnetic field at site ¢. As before, adjacent sites prefer to
have the same spin. When ¢ = 2, the Potts-model energy reduces to the Ising-model energy aside
from an additive constant (which does not affect the Gibbs distribution) and a scaling factor of two
(which corresponds to a factor of two in the temperature).

4.2. Random cluster model

The random cluster model was introduced by Fortuin and Kasteleyn [23] and generalizes the Ising
and Potts models. The random cluster model is also closely related to the Tutte polynomial of a
graph (see [11]). The Ising state shown in Figure 1 was generated with the methods described here.

In the random cluster model we have an undirected graph G, and the states of the system are
subsets II of the edges of the graph. Often G is a two- or three-dimensional lattice. Fach edge
{i,j} has associated with it a number p;; between 0 and 1 indicating how likely the edge is to be
in the subgraph. There is a parameter ¢ which indicates how favorable it is for the subgraph to
have many connected components. In particular, the probability of observing a particular subgraph
H C G is proportional to

IT » IT (t=pij) | ),

{i.iteH {i.ireH

where C(H) is the number of connected components of H (isolated vertices count as components
of size 1). To derive a random ¢-spin Potts state from a random H, one assigns a common random
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spin to all the vertices lying in any given connected component (see Sokal’s survey [51] for more
information on this).

Sweeny [54] used the results of Fortuin and Kasteleyn to generate random ¢-spin Potts states
near the critical temperature. He used the “single-bond heat bath” algorithm (i.e. Glauber dynam-
ics) to sample from the random cluster model, and then converted these samples into Potts states.
The single-bond heat bath algorithm for sampling from the random cluster model is a Markov
chain which focuses on a single edge of ¢ at a time and, conditioning on the rest of I, randomly
determines whether or not to include this edge in the new state H’. It turns out that the random
clusters are in some ways more directly informative than the Potts states themselves, since for
instance they can be used to obtain more precise information on spin correlations.

Swendsen and Wang [55] proposed a different Markov chain based on the relation between
the random cluster and Potts models. Given a random-cluster sample, they compute a random
Potts state consistent with the clusters. Given a Potts state, they compute a random subgraph of
G consistent with the Potts state. Their chain alternates between these two phases. In another
variation due to Wolff [62], a single cluster is built from the spin states and then flipped. One major
advantage of these approaches over the single-bond heat bath algorithm is that they obviate the need
to determine connectivity for many pairs of vertices adjacent in V. Determining the connectivity
can be computationally expensive, so Sweeny gave an algorithm for dynamically keeping track of
which vertices remain connected each time an edge is added or deleted. The dynamic connectivity
algorithm is limited to planar graphs, but the Markov chain itself is general.

We will now argue that the single-bond heat bath algorithm is monotone for ¢ > 1, so that
the method of monotone coupling-from-the-past applies to it. Here the states of the Markov chain
are partially ordered by subgraph-inclusion, the top state is GG, and the bottom state is the empty
graph. We claim that when ¢ > 1, this partial order is preserved by the Markov chain. At each step
we pick an edge (either randomly or in sequence) and do the heat bath to this particular edge. If
the two sites connected by this edge are in separate clusters in both states, or in the same cluster in
both states, then the probability of including the edge is the same, so the partial order is preserved.
If in one state they are in the same cluster while in the second state they are in separate clusters,
then 1) the first state is the larger state (in the partial order), and 2) the probability of putting a
bond there is larger for the firsstate. Hence the partial order is preserved, and our approach can
be applied.

We have been unable to find monotonicity in the Swendsen-Wang or Wolff algorithms. Re-
cent developments in dynamic connectivity algorithms [30] may make the single-bond heat bath
algorithm a viable option, given that one can obtain exact samples at effectively all temperatures
simultaneously using the heat bath algorithm. (See the discussion at the end of subsection 3.1.)

Our implementation of the monotone coupling-from-the-past version of the single-bond heat
bath algorithm, in both single-temperature and omnithermal versions (see subsection 3.1), appears
to work well in practice, provided that ¢ is not too large. For instance, when ¢ = 2 on a 512 x 512
toroidal grid, at the critical temperature it is only necessary to start at around time —30 to get
coalescence by time 0. (Here one step, also called a sweep, consists of doing a single-bond heat
bath step for each edge of the graph.) Using a naive connectivity algorithm, each sweep takes
about twenty seconds on a Sparcstation. Omnithermal sweeps (see subsection 3.1) take longer,
in part because determining connectivity is somewhat more involved, but principally because in
the single-temperature case a large fraction of the heat bath steps do not require a connectivity
query, whereas in the omnithermal case they all do. Since nearly all of the computer’s time is spent
computing connectivity, the incentive for improving on current dynamic connectivity algorithms is
clear.

The preliminary omnithermal results are striking; in Figure 2 one can see quite clearly the
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critical point, and how the internal energy and spontaneous magnetization vary with temperature
on the three-dimensional grid when ¢ = 2. Other macroscopically-defined quantities may also be
graphed as a monotone function of p. This makes it possible to obtain estimates of the critical
exponents from just a single (omnithermal) sample, whereas other approaches require a large num-
ber of samples at a number of different values of p close to criticality. We are hopeful that exact
omnithermal sampling will be of use with Monte Carlo studies of the Ising and Potts models.

internal energy spontaneous magnetization

\ \ T T \ \
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Figure 2: The internal energy and spontaneous magnetization of an Ising system as a function of
p=1—e2E/HT op the 100 x 100 x 100 grid with periodic boundary conditions. Data points are
given for 23% distinct values of the temperature, and are the result of a single simulation.

4.3. Ice and dimer models

In the square ice (or “six-vertex”) model whose residual entropy was determined by Lieb [40],
states are assignments of orientation to the edges of a square grid, such that at each internal vertex
there are equal numbers of incoming and outgoing edges (the “ice condition”). The six vertex-
configurations correspond to the six ways in which a water molecule in an ice crystal can orient
itself so that its two protons (hydrogen atoms) are pointing towards two of the four adjacent oxygen
atoms, and the ice condition reflects the fact that the protons from adjacent molecules will repel
each other. The assumption that the ice condition is satisfied everywhere is tantamount to the
assumption that the system is at temperature zero, so that in particular the Gibbs distribution is
just the uniform distribution on the set of minimum-energy configurations.

Let us assume that our square grid is a finite rectangle, where sites along the boundary have
edges that lead nowhere but nonetheless have a definite orientation. To turn ice-configurations on
this rectangle into elements of a distributive lattice, we first pass to the dual model by rotating
each directed edge by 90 degrees about its midpoint. This gives a model on the dual square grid in
which every internal square cell must be bounded by two clockwise edges and two counterclockwise
edges. One may think of such an orientation as a “discrete conservative vector field” on the set of
edges of the grid; here conservativity means that if one travels between two points in the grid, the
number of forward-directed edges along which one travels, minus the number of backward-directed
edges, is independent of the path one takes between the two points.

One can then introduce an integer-valued function on the vertices, called a height function,
with the property that adjacent vertices have heights that differ by 1, such that the edge between
vertex ¢ and vertex j points from 7 to j if and only if j is the higher of the two vertices. (If one
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pursues the analogue with field theory, one might think of this as a potential function associated
with the discrete vector field.) Height functions for the six-vertex model were first introduced by
van Beijeren [58].

The set of height functions with prescribed boundary conditions can be shown to form a dis-
tributive lattice under the natural operations of taking the maximum or minimum of the heights
of two height functions at all the various points in the grid [47]. Hence one can sample from the
uniform distribution on the set of such height functions, and thereby obtain a random sample from
the set of ice-configurations.

Note that this approach applies to models other than square ice; for instance, it also applies
to the “twenty-vertex” model on a triangular grid, in which each vertex has three incoming edges
and three outgoing edges. However, in all these applications it is important that the finite graph
that one uses be planar. In particular, one cannot apply these ideas directly to the study of finite
models with free periodic boundary conditions (or equivalently graphs on a torus), because such
graphs are not in general planar.

Another class of models to which our methods apply are dimer models on bipartite planar
graphs. A dimer configuration on such a graph is a subset of the edges such that every vertex of
the graph belongs to exactly one of the chosen edges. This model corresponds to adsorption of
diatomic molecules on a crystal surface, and the assumption that every vertex belongs to an edge
corresponds to the assumption that the system is in a lowest-energy state, as will be the case at
zero temperature.

Here, as in the case of ice-models, one can introduce a height function that encodes the com-
binatorial structure and makes it possible to view the states as elements of a distributive lattice.
This approach can be traced back to Levitov [39] and Zheng and Sachdev [64] in the case of the
square lattice, and to Bléte and Hilhorst [14] in the case of the hexagonal lattice. An independent
development is due to Thurston [57], building on earlier work of Conway [17]. A generalization of
this technique is described in [47].

Thurston’s article describes the construction not in terms of dimer models (or equivalently
perfect matchings of graphs) but rather in terms of tilings. That is, a dimer configuration on a
square or hexagonal grid corresponds to a tiling of a plane region by dominoes (unions of two
adjacent squares in the dual grid) or lozenges (unions of two adjacent equilateral triangles in the
dual grid).

Using the distributive lattice structure on the set of tilings, and applying coupling-from-the-
past, one can generate random tilings of finite regions. This permits us to study the effects that
the imposition of boundary conditions can have even well away from the boundary. One such
phenomenon is the “arctic circle effect” described in [35]; using our random-generation procedure
we have been able to ascertain that such domain-wall effects are fairly general, albeit associated
with boundary conditions that may be deemed non-physical.

For instance, Figure 3 shows a particular finite region and a tiling chosen uniformly at random
from the set of all domino-tilings of that region. To highlight the non-homogeneity of the statistics
of the tiling, we have shaded those horizontal dominoes whose left square is black, under the
natural black/white checkerboard coloring of the squares. The heterogeneity of the statistics is a
consequence of the “non-flatness” of the height function on the boundary; this phenomenon is given
a more detailed study in [16]. The tiling was generated using software written by the first author’s
undergraduate research assistants, using the methods described in this article.

Computer programs for generating random configurations of this kind can used as exploratory
tools for the general problem of understanding the role played by boundary conditions in these
classes of models.
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Figure 3: A random tiling of a finite region by dominoes.
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5. Running Time
5.1. Time-to-coalescence

In this section we bound the coupling time of a monotone Markov chain, i.e. a chain with partially
ordered state space whose moves preserve the partial order. These bounds directly relate to the
running time of our exact sampling procedure. We bound the expected run time, and the probability
that a run takes abnormally long, in terms of the mixing time of the Markov chain. If the underlying
monotone Markov chain is rapidly mixing, then it is also rapidly coupling, so that there is essentially
no reason not to apply coupling-from-the-past when it is possible to do so. If the mixing time is
unknown, then in it may be estimated from the coupling times. We also bound the probability
that a run takes much longer than these estimates.

Recall that the random variable T, is the smallest ¢ such that F°,(0) = FO,(1). Define T*,
the time to coalescence, to be the smallest ¢ such that Fi(0) = Fi(1). Note that Pr[T, > t], the
probability that F°,(-) is not constant, equals the probability that F{(-)is not constant, Pr[T* > ¢].
The running time of the algorithm is linear in 7, but since T, and T* are governed by the same
probability distribution, in this section we focus on the conceptually simpler 7.

In order to relate the coupling time to the mixing time, we will consider three measures of
progress towards the steady state distribution 7: Exp[T™], Prob[T™* > K] for particular or random
K, and d(k) = max,, ,, ||uf — uk|| for particular k, where p* is the distribution governing the
Markov chain at time k& when started at time 0 in a random state governed by the distribution
. Let po and p; be the distributions on the state space S that assign probability 1 to 0 and 1,
respectively.

Theorem 5 Let [ be the length of the longest chain (totally ordered subset) in the partially ordered
state-space S. Then
Prob[T™* > k]
l

Proof:  If z is an element of the ordered state-space 5, let h(z) denote the length of the longest
chain whose top element is z. Let the random variables X} and X} denote the states of (the two
copies of ) the Markov chain after k steps when started in states 0 and 1, respectively. If X(])“ + X{“
then h(XJ)+ 1 < h(X}) (and if X = XF then R(X[) = A(X})). This yields

Prob[T* > k] = Prob[XF # XF]

< d(k) < Prob[T* > k].

< E[A(X}) — h(X$)

= B0 - Eyh(X))|

< ok = pfll [max i) = min h()|
< d(k)l,

proving the first inequality. To prove the second, consider a coupling in which one copy of the
chain starts in some distribution p; and the other starts in distribution py. By the monotonicity of
the coupling, the probability that the two copies coalesce within k steps is at least Prob[T™ < k].
Hence our coupling achieves a joining of ¥ and u such that the two states disagree only on an
event of probability at most Prob[T™ > k]. It follows that the total variation distance between the
two distributions is at most Prob[T™* > k]. O

Next we show that Prob[T™ > k] is submultiplicative. At this point we will assume that the
valid moves at each time are the same. So for instance, if a random process operates on red vertices
and then on blue vertices, these two operations together are considered one step.
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Theorem 6 Let K1 and Ky be nonnegative integer random variables (which might be constant).
Then
Prob[T™ > K1 4+ K3] < Prob[T™ > K] - Prob[T™" > K.

Proof: The event that FOK1 is constant and the event that FI{,‘;l"'I(Z’ is constant are independent,

and if either one is constant, then FOKH'KZ) is constant. O
Next we estimate tail-probabilities for T™ in terms of the expected value of T™, and vice versa.

Lemma 7

kEProb[T™ > k] < Exp[T™] < k/Prob[T" < k.
Proof: The first inequality follows from the non-negativity of T*. To prove the second, note
that if we put ¢ = Prob[T* > k], then by submultiplicativity, Prob[T™* > ik] < &'. Hence Exp[T*] <
k+ ke +ke* + .- = k/Prob[T™ < k]. O

Now we can say what we meant by “if the Markov chain is rapidly mixing then it is rapidly
coupling” in the first paragraph of this section. The mixing time threshold Ti,ix is defined to be the
smallest &k for which d(k) < 1/e [5]. Let [ be the length of the longest chain in the partially ordered
state space. Since d(k) is submultiplicative (see [2]), after k = Tix(1 + Inl) steps, d(k) < 1/el, so
Prob[T* > k] < 1/e by Theorem 5, and by Lemma 7,

Exp[T*] < k/(1— 1/e) < 2k = 2Tpix(1 +In1).

It has been noted [18] that many Markov chains exhibit a sharp threshold phenomenon: after
(1 — €)Timix steps the state is very far from being random, but after (1 + ¢)Tiix steps the state is
very close to being random (i.e. d(k) is close to 0). In such chains the coupling time will be less
than O(Tpixlogl).

In addition to being useful as a source of random samples, our method can also be used as a
way of estimating the mixing time of a random walk. One application to which this might be put is
the retrospective analysis of someone else’s (or one’s own) past simulations, which were undertaken
with only the experimenter’s intuitive sense to guide the choice of how long the chain needed to
be run before the initialization bias would be acceptably small. Using our technique, one can now
assess whether the experimenter’s intuitions were correct.

For instance, suppose one takes ten independent samples of the coupling time random variable
T*, and obtains 10T, = T4 + - - -+ T19 = 997. Then one can be fairly confident that if one were
to run the Markov chain from an arbitrary starting point for 1000 steps (or if someone had done
so in the past), the residual initialization bias would be less than 2710, Assertions of this kind
can be made rigorous. Specifically, we can argue that if one treats Tos as a random variable, then
the initialization bias of the Markov chain when run for random time 107,y is at most 27'°. By
symmetry we have Prob[T* > T;] < 1/2, and then by submultiplicativity we get

Prob[T* > T} + - -+ 4 Tyo] < 2710,

Since d(k) is bounded by Prob[T* > k], the initialization bias is at most 271°. (We cannot make

any such rigorous assertion if we condition on the event 107 = 997, nor should we expect to be

able to do so in the absence of more detailed information about the nature of the Markov chain.)
Another approach would be to consider the maximum coupling time of a number of runs.

Theorem 8 Let TY,...,T,, and T be independent samples of the coupling time. Then

jtm!

Prob[T* > jmax(Ty,...,Ty)] < ———.
[ J (1 )]_(]‘|‘m)'
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Proof: Let Tinax denote max(7h,...,7T,). We will construct coupling times Sy,...,5; and
T* such that T™,Ty,...,T,, are mutually independent and T4,...,T,,51,...,5; are mutually
independent, but Sy,...,5; and 7™ are dependent. FEach coupling time is determined by the
random variables (earlier called Uy) that are used in simulating the Markov chain; call these random
variables “moves”. Let the first Tyax of the moves for the time S; be used for moves (¢ — 1)Tinax
through ¢Tiax — 1 of time T™, and let the remaining random moves for .5; be independent of the
other random moves. If for any ¢ we have 9; < Tihax, then moves (i — 1)Thax through iTayx — 1
of time T™ are coalescing, whence T < jTiax. Thus, Prob[T™ > jTax] < Prob[S; > Thax, @ =
1,...,j]=Prob[S; > Ty, i=1,...,5, k=1,...,m]. But if we have j 4+ m i.i.d. random variables,
the probablhty that the last j are strictly larger than the first first m is at most 1/(]+m) O

In the above example with m = 10, if we take j = 6 then Prob[T™ > 6T ax] < 1/8008 If the
longest of the ten runs takes 150 steps, then the randomized upper bound 67,4« is 900. Calculations
of this sort clearly can help an experimenter determine when her initialization bias is likely to be
acceptably small.

5.2. Optimizing performance

As we mentioned in subsection 2.2, when applying coupling-from-the-past in the context of mono-
tone Monte Carlo algorithms, it would be grossly inefficient to consider F° . for each positive integer
T. We may restrict T to take on the values Ty < Ty < ---. Farlier we recommended taking the
simulation start-times to be —T; = —2°. We shall see that this choice is close to optimal.

Let 7. denote the minimum value of 7' for which F°.(0) = F°;(1). One natural choice is to
take Ty = rTy, Ty = rTy, etc., for some initial trial value Ty and some ratio r. Then the number of
simulation steps required to find the value of FET*(O) O, ( Vis 2To 4 21Ty +2r2Ty 4+ - -4 2r* T,
where k is the least k such that %75 > T.. (The factor of 2 comes from the fact that we must
simulate using both 0 and 1 as initial states.) The number of required steps is

k+1 2 2

-1
! Wy < ——ph=top, < -
r—1 r—1 r—

2T,
1

where in the second inequality we assumed Ty < T,.. On the other hand, if one could magically
guess T, then computing #°; (0) and #°; (1) (and in so doing verifying that the value of 7} is
no greater than claimed) would take a full 27, simulation steps. The ratio between the two —
worst-case and best-case — is at most 72/(r — 1), which is minimized at r = 2, where it takes the
value 4. Hence, if our goal is to minimize the worst-case number of steps, we should take r = 2.

One might be concerned that it is better to minimize the expected number of steps, rather than
the worst case. Indeed, we argue that to minimize the expected number of steps one should pick
r=e (= 271828...). Let u be the fractional part of log,.(7p/1%). It is a reasonable heuristic to
suppose that u is approximately uniformly distributed. In fact, by randomizing the choice of Tp,
we can force this assumption to be true. In any case, the number of simulation steps needed to
find the unbiased sample is

U

r
1—-1/r

20T + 20 T + 27 P 4 < 2 T..
The expected value of 7" is (r — 1)/Inr, so the expected number of steps is bounded above by
2T.r/Inr. To minimize r/Inr we set r = e, with the expected number of steps equal to 2¢T, =
2.72(2Ty).

In practice, we do not expect to make great savings in time from this randomization strategy.
Indeed, using r = 2 we find that the expected number of steps required is approximately 2.89 times
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2T,, which is quite close to the optimal achieved by r = e. Hence we have adopted the simpler
doubling-procedure in our article.
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