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Abstract. Suppose that the integers are assigned i.i.d. random variables
{ωx} (taking values in the interval [1/2, 1)), which serve as an environment.
This environment defines a random walk {Xk} (called a RWRE) which, when
at x, moves one step to the right with probability ωx , and one step to the left
with probability 1−ωx . Solomon (1975) determined the almost-sure asymp-
totic speed (= rate of escape) of a RWRE, in a more general set-up. Dembo,
Peres and Zeitouni (1996), following earlier work by Greven and den Hol-
lander (1994) on the quenched case, have computed rough tail asymptotics
for the empirical mean of the annealed RWRE. They conjectured the form
of the rate function in a full LDP. We prove in this paper their conjecture.
The proof is based on a “coarse graining scheme” together with comparison
techniques.
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1. Introduction

In this paper, we continue the study, initiated in [3], [2], and [4], of tail
estimates for a nearest-neighbor random walk on Z with site-dependent
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transition probabilities. We start with the sample space � = [1/2, 1)Z ={
ω = (ω)x∈Z ; 1/2 ≤ ωx < 1

}
which serves as a “random environment”.

For a given probability distribution α on [1/2, 1), we denote by Pα the
product measure ⊗Zα on �. In order to describe a random walk in our
random environment, we first set W = {w = (wn)n∈N; wn ∈ Z} and
Xn(w) = wn. For every fixed ω, we consider the Markov chain (Xn)n≥0 on
Z starting at x with transition probabilities

Pω
x [Xn+1 = y | Xn = z] =


ωz if y = z + 1
1 − ωz if y = z − 1
0 otherwise ,

(1)

where Pω
x [ · ] denotes the measure on the path space W for the given environ-

ment ω. We usually write Pω instead of Pω
0 . Finally we define the “annealed”

measure by setting

Px[ · ] =
∫

Pω
x [ · ] Pα(dω) ,

and omit the subscript x for x = 0. The process X, when governed by Px ,
is an example of a random walk in random environment(RWRE). Note that
Pω

x can be viewed as the conditional measure on the path space given the
environment ω, and is often referred to as the “quenched” setting. For a
discussion of the different regimes that the RWRE (Xn) exhibits, we refer
to the introduction in [2].

Abbreviate ρ = ρ(x, ω) = (1 − ωx)/ωx and set 〈ρ〉 = ∫
ρ0(ω)Pα(dω)

= Eα[ ρ0 ], where here and throughout Eα[ ] denotes expectation with
respect to the measure Pα. In the situation where 〈ρ〉 < 1, the RWRE is
transient (c.f. [7]), and, P-a.s.,

lim
n→∞ n−1Xn = vα = (1 − 〈ρ〉)/(1 + 〈ρ〉) .

Tail estimates for Xn/n have been derived for the quenched setting in [3].
In particular, it was shown there that, for P-a.e. ω, the random variables
Xn/n satisfy with respect to Pω a large deviation principle of speed n and
explicit, deterministic, rate function which vanishes on (0, vα).

Rough tail estimates for the annealed case have been derived in [2]. In
the case considered here, the following was shown in Theorem 1.2 of [2].

Theorem 1 (Positive and zero drifts) Suppose thatα({1/2}) > 0 and〈ρ〉
< 1. Then, for any open and nonemptyG ⊂ (0, vα) such thatḠ ⊂ [0, vα),
we have

− inf
v∈G

I (v) ≤ lim inf
n→∞ n−1/3 log P(n−1Xn ∈ G)

≤ lim sup
n→∞

n−1/3 log P(n−1Xn ∈ G) < 0 , (2)
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whereḠ denotes the closure ofG andI (v) is given by

I (v) = inf
s≥0

{
| log α({1/2})| s + π2

8s2
(1 − v/vα)

}
= 3

2

∣∣∣π
2

log α({1/2})
∣∣∣2/3

(1 − v/vα)
1/3 . (3)

It was further conjectured in [2] (Remark 2, p. 681) that the lower bound in
Theorem 1 is sharp, namely that a full LDP holds with speed n1/3 and rate
function I . Our goal in this paper is to prove this conjecture. Namely, we
will show the following.

Theorem 2 (Positive and zero drifts) Suppose thatα({1/2}) > 0 and〈ρ〉
< 1. Then, for any open and nonemptyG ⊂ (0, vα) such thatḠ ⊂ [0, vα),

− inf
v∈G

I (v) ≤ lim inf
n→∞ n−1/3 log P(n−1Xn ∈ G)

≤ lim sup
n→∞

n−1/3 log P(n−1Xn ∈ Ḡ) ≤ − inf
v∈Ḡ

I (v)

We continue with some comments on the strategy of the proof of the upper
bound in Theorem 2. First, it is worthwile to recall how the lower bound
in Theorem 1 was obtained. Fix v < vα. The essence of the derivation (see
beginning of Section 4 as well as the bottom of p. 670 in [2]) is that the walk,
being in the vicinity of the point nv at time n, has lost time in a single region
which is made of fair sites. (We call a site x fair if ωx = 1/2 and biased
otherwise.) It turns out that the optimal length of this fair region (optimal in
the sense that it gives the largest lower bound) is of the order n1/3. Inside this
region, the walk behaves like a simple random walk reflected at the leftmost
point of this region and it stays there for approximately n(1 − v/vα) steps.
Outside this region we expect the walk and the environment to be typical.

In order to prove the upper bound, our aim is to show that the event
{Xn/n ≤ v} comes typically from configurations where the walk stays at
least n(1 − v/vα) steps in “long” regions of length of order n1/3 where
biased coins are “sparse,” and that such configurations are responsible for
the leading asymptotics. We then consider the “cost” that the environment
produces such large regions as well as the cost for the walk to spend approx-
imately n(1 − v/vα) steps in them. This will give us a variational problem
leading to the function I (v).

At this point it is noteworthy to mention that the model we study here
is to some extent analogous to annealed Brownian motion in a Poissonian
potential, see [6] and Sznitman [10]. Indeed, the specification of what we
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mean by long fair regions and what is sparse, is in the same spirit as in the
coarse graining scheme developed in [6].

In our situation, the coarse graining works as follows. For the sake of
simplicity, we now assume that α is concentrated on two atoms; 1/2 and,
say, 2/3. We partition Z into blocks of length nθ , where θ = 1/3 − δ, and
δ ∈ (0, 1/24). (The choice δ < 1/24 will play a role later in the paper). We
pick a parameter ε ∈ (0, 1), which eventually will go to zero, and declare
a block to be “biased”, if the proportion of biased sites in it is larger then
ε. If this is not the case, the block will be called fair. A long region where
biased sites are sparse corresponds to connected components of fair blocks
which have a length at least rn1/3 (r will eventually go to zero). We will then
show, using bounds in the spirit of Lemma 2.2 in [2], that we can neglect
configurations where the walk makes more than Knδ left crossings of biased
blocks, provided K is chosen large enough. This, together with the fact that
we can assume that there are at most Knδ fair blocks in the natural range of
the walk, plays an important role. It allows us to control the number of visits
of fair regions, since, by construction, they have a biased block attached to
their left and to their right side. Furthermore, we will see that (provided r is
small enough) the probability that the walk spends at least nv/vα steps in
the complement of long fair regions, is negligible.

At this point we should mention, that the analogous step in [6] (in the
context of Brownian motion in the random potential V ) heavily relied on
good lower bounds on the principal Dirichlet eigenvalue of the operator
− 1

2
d2

dx2 + V in an interval I , which could be found in [9]. In our situation
of random drift, however, we lack the knowledge of an analogous result.

Before we close the introduction with some remarks, let us explain how
the article is organized. In Section 2.1 we introduce our coarse graining
scheme and some basic objects which are needed in the sequel. In Section
2.2 we proceed with some preparatory lemmas and with the basic reduction
step. In particular, we partition the space �, over which the integration is
performed, into three events Ac

1, A2, and A3. Here, Ac
1 corresponds to the

event that there is an atypically long excursion to the left or that there is an
atypically large number of fair blocks or that there is an atypical number of
crossings of biased blocks from right to left, while A2 denotes the event that
the walk spends a large time in short fair blocks and A3 denotes the event
that it spends a large time in long fair blocks. We also show in that section
that Ac

1 is negligible compared to the upper bound in Theorem 2. In Section
2.3 we investigate the event A3 which gives our desired upper bound. In
Section 2.4, which is the most delicate part of the proof of Theorem 2, we
show that the event A2 is negligible, provided our parameters are chosen in
an appropriate way. In the Appendix, we give the proof of Lemma 5, which
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is crucial in the investigation of A2. The proof of this lemma uses results
and techniques from [2] and [4].

Remarks

i) A challenge is to extend the above considerations to the case where the
support of α includes points both to the right and to the left of 1/2. In
this case, the annealed rate of decay is polynomial while the quenched
rate of decay is exponential in nβ , some β > 0, and is conjectured to
fluctuate on subsequences (c.f. [4]).

ii) Observe that due to the right continuity of I (·) at 0, the upper bound
in Theorem 2 also holds for G = [−a, 0], a > 0, where in this case
we have to replace infv∈G I (v) by I (0). It is also easy to see that the
strategy which is used to prove the lower bound in Theorem 1 can be
extended to the event {Xn ≤ 0}, again with rate I (0).

iii) We have concentrated in the region [0, vα) because this is the region
where the RWRE exhibits behaviour significantly different from a sim-
ple random walk. Outside the region [0, vα], the decay rate is exponen-
tial in n, c.f. [2], Theorem 1.3.

2. The proof of Theorem 2

In this section we give the proof of the upper bound in Theorem 2. Observe
that it is enough to establish the upper bound for G = [0, v], with 0 < v <

vα. We suppose that from now on, we are working with a α for which the
assumptions of Theorem 2 are valid. In particular, we have that α({1/2}) ∈
(0, 1).

2.1. Basic definitions

As previously mentioned in the introduction, the proof of Theorem 2 is based
on a description of the environment in terms of fair and biased blocks. Let
δ ∈ (0, 1/24) be fixed, and set

θ = 1/3 − δ (4)

Let n > 1, and divide Z into blocks Bj of length bnθc:

Bj = [jbnθc, (j + 1)bnθc) ∩ Z (j ∈ Z)

where bnθc denotes the integer part of nθ . Pick a ξ ∈ (0, 1/2) such that

α ([1/2, 1/2 + ξ)) < 1 (5)
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Observe that thanks to our assumptions on α, such a ξ always exists. Pick
ε with 0 < ε < 1 − α([1/2, 1/2 + ξ)). We say that the block Bj is biased
if the proportion of sites x in Bj with ωx ≥ 1/2 + ξ is strictly larger than
ε. Otherwise the block is called fair (at the end we let ε → 0, followed by
ξ → 0). The random sets of indices of biased and fair blocks are given by

J b = {j ∈ Z ; Bj is biased} and J f = (J b)c .

It will be convenient to declare a subset S ⊂ Z to be connected, if for any
pair of sites x, y ∈ S there exists a sequence of consecutive pairs of nearest
neighbors in S linking x to y. Note that all the sites contained in fair blocks
can be decomposed into connected components, which we call fair regions.
We will divide these regions into two classes according to whether they are
“long” or “short”. More precisely, for fixed parameter r ∈ (0, 1) (which
will tend to zero finally), and for s ∈ {1, 2}, we define

F(s) =
⋃

i∈I (s)

F
(s)
i (6)

where the F
(s)
i -s are the connected components of the set

⋃
j∈J f Bj with

the property

|F(1)
i | ≥ rn1/3 and |F(2)

i | < rn1/3 (7)

and I (1) and I (2) denote arbitrary index sets. We will specify these sets
later, according to our needs. In order to control the time the walk spends in
various regions, we enlarge these components by attaching, if present, one
biased block to them on the left and one to the right, respectively. Observe
that only forF(1)

i which have an infinite length, possibly both of these biased
blocks are not present. The enlargement of F

(s)
i will be denoted by F̄

(s)

i ,
and we set

F̄
(s) =

⋃
i∈I (s)

F̄
(s)

i (8)

with obvious notations if for some i ∈ I (1): |F(1)
i | = ∞. The next step

is to introduce stopping times at which the walk enters F
(s)
i and leaves the
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enlarged region F̄
(s)

i , consecutively. For s ∈ {1, 2}, we define

R
(s)
i,1 = inf

{
k ≥ 0; Xk ∈ F

(s)
i

}
, (9)

the first time the walk visits F
(s)
i , and

D
(s)
i,0 = 0, D

(s)
i,1 = inf

{
k > R

(s)
i,1 ; Xk /∈ F̄

(s)

i

}
(10)

the first time after R
(s)
i,1 , the process exits F̄

(s)

i . For i ∈ I (s), we set induc-
tively

R
(s)
i,k+1 = D

(s)
i,k + R

(s)
i,1 ◦ ϑ

D
(s)
i,k

, D
(s)
i,k+1 = R

(s)
i,k+1 + D

(s)
i,1 ◦ ϑ

R
(s)
i,k+1

, (k ≥ 1)

(11)

where ϑ denotes the canonical shift. R
(s)
i,k and D

(s)
i,k are called the beginand

the end of thek-th visit of the region F
(s)
i , respectively. Observe that it is

of course possible that R
(s)
i,k = D

(s ′)
i ′,k′ . Using these variables we express the

duration of thek-th visit of the region F
(s)
i , as

T
(s)
i,k = D

(s)
i,k ∧ n − R

(s)
i,k ∧ n (k ≥ 1) (12)

For the region F
(s)
i , we denote the total number of visits by V

(s)
i = |{k ≥

1; T
(s)
i,k > 0}|. It will be important to look at S(s)

n , the total amount of time
spent visiting the fair regions, up to time n

S(s)
n =

∑
i∈I (s)

∑
k=1,...,V

(s)
i

T
(s)
i,k (13)

with obvious notations if V
(s)
i = 0.

Finally, we introduce left crossings of biased blocks (up to time n), as
follows. For x ∈ Z, k ≥ 1, we set

τ 0
x = 0, τ k

x = inf
{
t > τk−1

x ; Xt = x
}

(14)

the successive times of hitting the site x. During the time intervals (τ k
x ∧

n, τ k+1
x ∧ n], (k ≥ 1), excursions (starting at x) take place either to the left

or to the right of x (unless the time interval is empty.) The height of such
an excursion is defined by



198 A. Pisztora et al.

Hk
x =



max
{
Xt − x ; t ∈ (τ k

x ∧ n, τ k+1
x ∧ n]

}; Xτk
x +1 > x

(right excursion)
min

{
Xt − x ; t ∈ (τ k

x ∧ n, τ k+1
x ∧ n]

}; Xτk
x +1 < x

(left excursion)
0; (τ k

x ∧ n,

τ k+1
x ∧ n] = ∅

(15)

The number of left crossings of the block Bj until time n is given by

Nj,n =
∣∣∣{{k ; Hk

(j+1)bnθ c ≤ −bnθc}
}∣∣∣ (16)

and the total number of left crossings of biased blocks up to time n can be
written as

Nn =
∑
j∈J b

Nj,n . (17)

2.2. Basic reduction: few fair blocks, not too many or too long left crossings

In order to prove the upper bound in Theorem 2, we have to estimate the
probability of the event {Xn/n ≤ v} for v ∈ (0, vα). In this section we break
up this event into three events: Ac

1, A2 and A3 and we will show about the
first of these events that it is negligible for the purpose of proving Theorem
2. The other two events will be discussed in the following sections. We start
with the description of A1 which is itself the intersection of three further
events. Pick K > 0 and set

G1(K, n) = {∃ left crossing of length Kn1/3 up to time n
}

=
⋃

0≤t<s≤n

{
Xs ≤ Xt − Kn1/3

}
(18)

We will drop the arguments of G1. By Lemma 2.2 in [2], we have that

P[G1] ≤ 2n(n + 1)2 1

1 − 〈ρ〉〈ρ〉Kn1/3
,

which immediately implies

lim sup
n→∞

n−1/3 log P[G1] ≤ −K| log〈ρ〉| . (19)
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Hence, when K is chosen large enough, G1 is negligible for the purpose of
proving Theorem 2. In particular, on the set {Xn/n ≤ v} ∩ Gc

1, the walk is
confined to the interval

U = U(v, K, n) = [−Kn1/3, bvn + Kn1/3c] (20)

We next want to get an upper bound on the number of fair blocks in the
range of the walk up to time n. For K > 0 we set

G2(ξ, ε, δ, K, n) = {|{j ∈ J f ; Bj ∩ [−n, n] 6= ∅}| > Knδ
}

(21)

Lemma 1 Letδ < 1/24 andε ∈ (0, 1 − α([1/2, 1/2 + ξ))). We then have

lim sup
n→∞

n−1/3 log Pα[G2] ≤ −K3∗
p(ξ)(ε) ,

where3∗
p(ξ)(·) denotes the logarithmic moment generating function of a

Bernoulli variable with parameterp(ξ) = 1 − α([1/2, 1/2 + ξ)) ∈ (0, 1).
(Note thatε < p(ξ), thus3∗

p(ξ)(ε) > 0.)

Proof. First, by using Cramer’s Theorem we easily obtain the following
estimate on the probability that a given block is fair:

Pα[B1 is fair ] ≤ exp(−bnθc3∗
p(ξ)(ε)) (22)

where we recall that

3∗
p(x) = 1[0,1]c (x) · ∞ + 1[0,1](x)

(
x log

x

p
+ (1 − x) log

1 − x

1 − p

)
Since P[G2] ≤ (2n+2)Knδ+2Pα[B1is fair]Knδ

, and recalling that θ = 1/3−
δ, δ < 1/24, Lemma 1 follows. ut

The next Lemma plays a key role in what follows. It gives control over
Nn, the total number of left crossings of biased blocks until time n, cf. (17).
For K > 0 we define

G3(ξ, ε, δ, K, n) = {Nn > Knδ} (23)

Lemma 2 Let δ < 1/24 andε ∈ (0, 1 − α([1/2, 1/2 + ξ))). Then

lim sup
n→∞

n−1/3 log P[G3] ≤ −εK| log ρ∗(ξ)| (24)

whereρ∗(ξ) = (1/2 − ξ)/(1/2 + ξ) ∈ (0, 1).
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Proof. Instead of working directly with the annealed measure P, we derive
an appropriate upper bound on Pω[G3] which is uniformin the environment
ω. Set xj = jbnθc, (j ∈ Z). The main ingredient is the following estimate:
for every j ∈ Z,

sup
y∈Z

Pω
y [Nj−1,n ≥ 1] = Pω

xj
[Nj−1,n ≥ 1] ≤ Pω

xj
[τ 1

xj−1
< τ 1

n+xj
, τ 1

xj−1
< ∞]

≤
n+xj −1∑

r=xj

r∏
y=xj−1+1

ρ(y, ω) , (25)

where Nj−1,n denotes the number of left crossings of Bj−1 until time n, and
the last inequality follows from [1], eq. preceding (5) on p. 73. Note that
if the block Bj−1 is biased, then there are at least (εbnθc − 1) ρ-s in the
product above with ρ(y, ω) ≥ ρ∗(ξ). Therefore,

sup
x∈Z

Pω
x

 ⋃
j∈Jb(ω)

−n1−θ ≤j≤n1−θ

{Nj,n ≥ 1}


≤ 2n2−θ exp

(− (εbnθc − 1) | log ρ∗(ξ)|) (26)

We now want to apply the strong Markov property. To this end we define
L1 to be the first time a left crossing of a biased block has been completed,
i.e.

L1 = inf
{
t ≥ 0 ; Xt ∈ {jbnθc; j ∈ J b

}
, ∃s ∈ [0, t) : Xs − Xt = bnθc}

and inductively (k ≥ 1): Lk+1 = Lk + L1 ◦ ϑLk
. Since on G3 the bKnδc-th

left crossing of a biased block had been finished before time n, we find by
iterating the strong Markov property

Pω[G3] ≤ Pω[LbKnδc < n] ≤ Pω[LbKnδc−1 < n, L1 ◦ ϑLbKnδc−1
< n]

≤ sup
x∈Z

Pω
x [L1 < n]bKnδc

≤ (
2n2−θ

)bKnδc
exp

(− (εbnθc − 1
) bKnδc| log ρ∗|) .

Since δ < 1/24 and θ + δ = 1/3, the lemma follows. ut
We are now ready to define the (typical) event A1:

A1(ξ, ε, δ, K, n)

= {6 ∃ left crossing of length Kn1/3, |{j ∈ J f; Bj ⊂ [−n, n]}|

≤ Knδ , Nn ≤ Knδ
}

(27)
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Since Ac
1 = G1 ∪ G2 ∪ G3, by (19) and Lemmas 1 and 2, we have

lim sup
K→∞

lim sup
n→∞

n−1/3 log P[Ac
1] = −∞ (28)

Fix v ∈ (0, vα). As a last global parameter, we introduce ζ > 0 specified
in (29) (at the end we will let ζ go to zero). It will be useful to give a list of
all our global parameters with their allowed range (and their final limits)

v : 0 < v < vα fixed

δ : 0 < δ < 1/24 fixed

K : 1 < K < ∞ (K → ∞, makes Ac
1 negligible)

r : 0 < r < 1 (r → 0, controls the maximal

length of short fair blocks)

ε : 0 < ε < 1 − α([1/2, 1/2 + ξ)) (ε → 0, controls the maximal

proportion of biased sites

in a fair block)

ζ : 0 < ζ < 1 − v/vα (ζ → 0, controls the time spent

outside long fair regions)

ξ : 0 < α ([1/2, 1/2 + ξ)) < 1 (ξ → 0, controls biasdness

of sites) (29)

The parameters K and r are used to get rid of various negligible terms,
whereas ε, ζ and ξ are used to get the control in the upper bound arbitrarily
close to the rate function.

Finally, as promised, we break up the event {Xn/n ≤ v} as follows:

{Xn/n ≤ v}

= (Ac
1 ∩ {Xn/n ≤ v}) ∪ (A1 ∩ {Xn/n ≤ v, S(1)

n ≤ n(1 − v/vα − ζ )})

∪ (A1 ∩ {Xn/n ≤ v, S(1)
n > n(1 − v/vα − ζ )})

:= (Ac
1 ∩ {Xn/n ≤ v}) ∪ A2 ∪ A3 , (30)

where S(1)
n was defined in (13). Note that the events A2 and A3 depend on the

parameters (ξ, ε, δ, K, v, ζ, n). In view of (28) we know that A1 ∩{Xn/n ≤
v} is negligible for the purpose of proving Theorem 2. In the next two
sections we will show that P[A3] is the leading term giving the rate I (v)

and P[A2] is negligible.
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2.3. The leading term: time spent in long fair regions

In this section we will show that by suitably adjusting our parameters, the
event A3 is giving the rate I (v), where we recall that I (v) = 3

2 |π
2 log α({1/

2})|2/3 (1 − v/vα)
1/3. Indeed, we have

Proposition 2.1

lim sup
ξ→ 0

lim sup
ζ→0

lim sup
ε→0

lim sup
r→0

lim sup
K→∞

lim sup
n→∞

1

n1/3
log P[A3]

≤ −I (v) (31)

Before we begin with the proof of Proposition 2.1, let us highlight some
important steps. On the set A3, we look at all distinct long fair regions F(1)

i

in [−n, n], which is the natural range of the walk up to time n. It turns out
that on A3, there is at least one such region and that their number is bounded
above by K/r , a constant which is independent of n and ω. We will then
bound the probability of A3 by the probability that the walk stays at least
n(1 − v/vα − ζ ) steps in

⋃
i F̄

(1)

i ∩ [−n, n] multiplied by the probability
that the environment produces such regions.

To get hands on the first factor, we will use the following fact. Since our
environment produces a drift to the right, the probability that the RWRE
doesn’t exit an interval J until time t > 0 is bounded above by the prob-
ability that the RWRE, reflected at the left endpoint of J , doesn’t exit this
interval until time t > 0, and J only consists of fair coins. We are then in a
situation where we can proceed by using classical eigenvalue estimates.

Finally, the second factor is easily controlled: Choosing our parameters
appropriatly, the probability that F̄

(1)

i ∩ [−n, n] 6= ∅ occurs is, up to cor-
rection terms of the order exp{o(n1/3)}, bounded above by the probability
that F̄

(1)

i ∩ [−n, n] consists only of fair sites.

Proof. For fixed parameters, as in (29), we will partition the set A3 into a
family A of cardinality |A| = exp o(n1/3). Thus, once we have shown

lim sup
ξ→0

lim sup
ζ→0

lim sup
ε→0

lim sup
r→0

lim sup
K→∞

lim sup
n→∞

sup
A∈A

n−1/3 log P[A]

≤ −I (v) , (32)

(31) will follow. In order to describe the events A ∈ A, the first step is to
introduce the random variable H(ω) which stands for the number of distinct
long fair regions intersecting the interval [−n, n]. We claim that on the set
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A3, the following bounds hold:

1 ≤ H ≤ (2 + K/r) (33)

The lower bound is implied by S(1)
n > 0. The upper bound follows from the

fact that, on A3, we have by the definition of A1 at most Knδ fair blocks
with total length l ≤ Knδbnθc. On the other hand the total length of all the
(at least H −2) long fair regions completely contained in [−n, n] is at least
(H − 2)rn1/3, and we already know that it cannot exceed Knδbnθc. Thus
we have (33). It will be convenient to use the following labeling of the long
fair regions on the set A3. F(1)

1 is the leftmost long fair stretch intersecting
[−n, n], F(1)

2 is the next one to the right, etc., and F
(1)
H is the rightmost one

which intersects [−n, n]. Observe that for k 6= j , F(1)
k ∩ F

(1)
j = ∅. The

times R
(1)
i,k , T

(1)
i,k etc. will be labeled accordingly. We have to keep track of

all the possible configurations (locations) of the regions F
(1)
i , 1 ≤ i ≤ H ,

as well. To this end, we specify the left and right endpoints (of the relevant
parts) of these regions as follows: For i = 1, ..., H , we define xi (ỹi) to be
the leftmost (rightmost) point of the leftmost (rightmost) block which has a
nonempty intersection with F

(1)
i ∩ [−n, n]. For notational convenience we

set yi = ỹi + 1. On A3, the number of all such sequences (xi, yi)i=1,...,H is
certainly bounded by (2n)H ≤ (2n)(2+K/r). As next, we define

M = M(ω, w) = {
(i, k) ; T

(1)
i,k > 0

}
(34)

the index set of all times associated with visits of long fair regions up to
time n. Note that T

(1)
i,k > 0 implies that i ∈ {1, . . . , H }. We set M = |M|,

and estimate it as follows. When the walk starts, it will possibly cross all the
H essentially fair regions from the left making thereby only right crossings
of the attached biased blocks. Note that after one of these blocks have been
(right-) crossed, the next crossing of the same block is necessarily a left
crossing. Since on A3 the number of all left crossings of biased blocks is
bounded by Knδ we have for all n > 1 and K, 1/r large,

1 ≤ M ≤ H + 2Knδ ≤ 4nδK/r . (35)

In order to use the strong Markov property, we have to describe the historical
order of the relevant stopping times R

(1)
i,k , (i, k) ∈ M. Most conveniently

we do this by looking at the time evolution of the walk and enumerate the
pairs of indices (i, k) ∈ M by attaching an additional index l to them,
corresponding to the (historical) order they occur. Thus, for example, on the
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set A3 ∩ {H = h, M = m}, we have

0 ≤ R
(1)
i1,k1

< D
(1)
i1,k1

≤ R
(1)
i2,k2

< D
(1)
i2,k2

≤ · · · ≤ R
(1)
il ,kl

< D
(1)
il ,kl

≤ · · · ≤ R
(1)
im,km

< D
(1)
im,km

∧ n , (36)

with il ∈ {1, . . . , h} for each l ≤ m. An upper bound on the number O of
all such orderings of M on the set A3 ∩ {H = h, M = m} is given by

O ≤ h3m−1 ≤ (2 + K/r)34nδK/r (37)

Indeed, the factor h corresponds to the choice of i1. Since the walk cannot
jump, we have

il+1 ∈ {il − 1, il, il + 1} l = 1, . . . , m − 1 , (38)

which explains the factor 3 in (37). Note finally that the reason why there is
no additional factor in (37) which would correspond to the choice of the kl-s
is that for given i1, . . . , im, the indices k1, . . . , km are uniquely determined.
In fact they are given by

kl = |{1 ≤ r ≤ l ; ir = il}| (39)

We say that the indices (kl)1≤l≤m satisfying (39) are associated with(il)1≤l≤m.
Since the right hand side of (37) is independent of h and m, the bound is
valid on the entire set A3. Observe that the ordering itself is uniquely de-
termined for each fixed (ω, w). Hence, il and kl are well defined random
variables for 1 ≤ l ≤ M . We now partition the set A3 according to the
values of H , M , (il)1≤l≤M and (xi, yi)1≤i≤H . We set

A = A3 ∩ {H = h, M = m
}

∩ {(il)1≤l≤m = (īl)1≤l≤m; (xi, yi)1≤i≤h = (x̄i, ȳi)1≤i≤h

}
,

(40)

where (īl)1≤l≤m and (x̄i, ȳi)1≤i≤h are fixed sequences in the image of the
random variables (il)1≤l≤m and (xi, yi)1≤i≤h on the set A3 ∩ {H = h, M =
m} (with the (il)-s satisfying (38)).

We will use the convention that for given (īl)1≤l≤m, (k̄l)1≤l≤m denote the
indices associated with the (il)-s. The number |A| of sets into which A3 has
been partitioned can be bounded as follows:
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|A| ≤ (2 + K/r) (4nδK/r) 34nδK/r(2n)(2+K/r) (41)

Note that this bound is a function exp o(n1/3), for n → ∞, as claimed pre-
viously. It remains to control the probabilities of the sets A ∈ A, uniformly
in A. Pick λ > 0. By using the Chebyshev inequality,

P[ A ] ≤ exp(−λn(1 − v/vα − ζ )) Eα
[

Eω
[

1A exp(λS(1)
n )

] ]
. (42)

The following estimate (which can easily be verified) will be useful to
control boundary effects in connection with the strong Markov property.
For (i, k) ∈ M:

T
(1)
i,k ≤ (D

(1)
i,1 ∧ T[−n, n]) ◦ ϑ

R
(1)
i,k

, (43)

where T[−n, n] denotes the exit time of the interval [−n, n]. Observe also
that on A,{

(xi, yi)1≤i≤h = (x̄i, ȳi)1≤i≤h

} ⊂
⋂

i=1,...,h

{
[x̄i , ȳi) consists of fair blocks

}
=: C (44)

Set Ã = {0 ≤ R
(1)

ī1,k̄1
< D

(1)

ī1,k̄1
≤ R

(1)

ī2,k̄2
< D

(1)

ī2,k̄2
≤ · · · ≤ R

(1)

īm−1,k̄m−1

< D
(1)

īm−1,k̄m−1
< n}.

Using (43) and (44), we find

Eω
[

1A exp(λS(1)
n )

] = Eω

[
1A exp

(
λ
∑

l=1,...,m

T
(1)

īl ,k̄l

)]

≤ 1C(ω)Eω

[
1Ã exp

(
λ

∑
l=1,...,m−1

T
(1)
i,k

)

× exp
(
λ(D

(1)

īm,1
∧ T[−n, n]) ◦ ϑ

R
(1)

īm,k̄m

)]

≤ 1C(ω)Eω

[
1Ã exp

(
λ

∑
l=1,...,m−1

T
(1)
i,k

)]
× max

x∈{x̄(īm), ȳ(īm)}
Eω

x

[
exp

(
λ(D

(1)

īm,1
∧ T[−n, n])

)]
,

(45)
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where we applied the strong Markov property to the stopping time R
(1)

īm,k̄m
.

Note that we replaced x̄īm
by x̄(īm). By successively conditioning on the

times R
(1)

īl ,k̄l
, we find

Eω
[

1A exp(λS(1)
n )

]
≤ 1C(ω)

∏
l=1,...,m

max
x∈{x̄(īl ), ȳ(īl )}

Eω
x [ exp(λ(D

(1)

īl ,1
∧ T[−n, n]))] (46)

The next step is to give an upper bound on the exponential moment occurring
in (46), uniformly in ω. For i = 1, . . . , h we set Ji = [x̄i−bnθc, ȳi+bnθc)∩
Z, and denote the interval obtained by doubling Ji symmetrically about its
leftmost point by 2Ji . (Note that |2Ji | = 2|Ji | − 1). We claim that for
1 ≤ l ≤ m,

supω∈� maxx∈{x̄(īl ), ȳ(īl )} Eω
x [ exp(λ(D

(1)

īl ,1
∧ T[−n, n]))]

≤ maxx∈{x̄(īl ), ȳ(īl )} Ef
x [ exp(λ(T2Jīl

))] , (47)

where TI denotes the exit time from the interval I and Ef
x is the path measure

of a (simple) symmetric random walk (SRW) starting from x. To show (47),
we observe that for all t ≥ 0, for all (finite) intervals J ⊂ Z, x ∈ J and
ω ∈ �,

Pω
x [TJ ≥ t] ≤ Pω,→

x [TJ ≥ t] ≤ Pf,→
x [TJ ≥ t] , (48)

where Pω,→
x and Pf,→

x denote the path measure of a RWRE and of a SRW
starting at x with reflection at the left end point of J , respectively. But
Pf,→

x [TJ ≥ t] = Pf
x [T2J ≥ t]. Hence, we have (47). Coming back to (46),

we find

Eω
[

1A exp(λS(1)
n )

] ≤ 1C

∏
l=1,...,m

max
x∈{x̄(īl ), ȳ(īl )}

Ef
x [ exp

(
λT2Jīl

)
] (49)

A good bound on Ef
x [exp(λTI )] is provided by the next (well known) lemma,

which is also needed for later purpose. For the reader’s convenience, we
include a short proof.

Lemma 3 Let I = [−a, a], a ≥ 1. For ρ ∈ (0, 1), setλ = (1 − ρ) π2

8a2 .
There exists a constantχ = χ(ρ) ∈ (1, ∞) such that for alla large enough

sup
x∈I

Ef
x [exp(λTI )] ≤ χ(ρ) (50)
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Let us emphasize that χ does not depend on a.

Proof. By using symmetry and the strong Markov property it is easy to see
that

Ef
x [exp(λTI )] ≤ Ef

0 [exp(λTI )]

As next we use

Ef

0 [exp(λTI )] = 1 + λ

∫ ∞

0
eλuPf

0 [TI > u] du

= 1 + λa2
∫ ∞

0
eλa2uPf

0 [TI/a
2 > u] du (51)

It follows from Spitzer [8], p. 243 that for all ε′ ∈ (0, 1), there exists
c′(ε′) ∈ (0, ∞) such that for all a large enough

Pf

0 [TI/a
2 > u] ≤ c′(ε′) exp(−u(1 − ε′)π2/8), ∀u ≥ 0 (52)

By setting ε′ = ρ/2 and combining these estimates, (50) follows. ut

In order to apply the previous lemma in (49), we pick ρ ∈ (0, 1) and set

λ = (1 − ρ)
π2

8(
∑

1≤i≤h |Ji |)2
(53)

Since īl ∈ {1, . . . , h}, we have for all 1 ≤ l ≤ m that λ ≤ (1 − ρ)π2/

(8|Jīl
|2). Hence, in view of Lemma 3 and (49) we have

Eω
[

1A exp(λS(1)
n )

] ≤ 1C(ω) χ(ρ)m (54)

Using (42), (54) and the fact that the random environment is independent
(with respect to Pα) in disjoint regions, we obtain, recalling that m ≤
4nδK/r

P[A] ≤ χ(ρ)4nδK/r exp

−n

(
1 − v

vα

− ζ

)
(1 − ρ)π2

8
( ∑

1≤i≤h

|Ji |
)2


×
∏

1≤i≤h

Pα[ [x̄i , ȳi) consists of fair blocks ] (55)

Finally, using the fact that Pα[ B1 is fair ] ≤ exp(−bnθc3∗
p(ξ)(ε)) cf. (22),
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we find∏
1≤i≤h

Pα[ [x̄i , ȳi)consists of fair blocks ]

≤ exp

(
−3∗

p(ξ)(ε)
∑

1≤i≤h

(ȳi − x̄i)

)

= exp(2hbnθc3∗
p(ξ)(ε)) exp

(
−3∗

p(ξ)(ε)
∑

1≤i≤h

|Ji |
)

(56)

Set L(n) = n−1/3∑
1≤i≤h |Ji | and recall that h ≤ (2 + K/r). Using (55)

and (56), we obtain

P[A] ≤ χ(ρ)4nδ K
r exp

((
4 + 2K

r

)
bnθc3∗

p(ξ)(ε)

)
× exp

(
−n1/3

(
L(n)3∗

p(ξ)(ε) + (1 − ρ)π2

8L(n)2

(
1 − v

vα

− ζ

)))
≤ χ(ρ)4nδ K

r exp

((
4 + 2K

r

)
bnθc3∗

p(ξ)(ε)

)
× exp

(
−n1/3 inf

s≥0

(
s3∗

p(ξ)(ε) + (1 − ρ)π2

8s2
(1 − v

vα

− ζ

))
(57)

Since the right hand side of (57) is independent of the choice of A ∈ A, we
have

lim sup
n→∞

sup
A∈A

n−1/3 log P[A]

≤ − inf
s≥0

(
s3∗

p(ξ)(ε) + (1 − ρ)π2

8s2

(
1 − v

vα

− ζ
))

= −3

2

(
(3∗

p(ξ)(ε))
2 (1 − ρ)

π2

4

(
1 − v

vα

− ζ
))1/3

(58)

Finally, taking the limitρ → 0, observing that limε→0 3∗
p(ξ)(ε) = | log α([1/

2, 1/2 + ξ))|, and performing the remaining limsup operations, we arrive
at (31). This finishes the proof of Proposition 2.1. ut
Remark: Note that after taking the limit n → ∞, our upper bound in (58)
does not depend on K and r . However, for later purpose, we need to know
that the limsup operations carried out in the given order do give the correct
upper bound −I (v).
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2.4. The negligible term: time spent in short fair regions and traversing
biased blocks

We begin with the identification of the time (until n) which has not yet been
covered by the times S(1)

n and S(2)
n . To this end, we introduce the notion of a

double biased block, which is the union of two neighboring biased blocks.
More precisely, for each i ∈ Z such that Bi−1 and Bi are biased, we set
Bi = Bi−1 ∪ Bi . The (random) set of all such i-s is denoted by I (3). The
centerCi of the double biased block Bi is the set {ibnθc − 1, ibnθc}. Note
that n consecutive biased blocks give rise to n − 1 double biased blocks.
The analogue of T

(1)
i,k (the time spent in long fair regions) will be described

by differences of appropriate stopping times. For i ∈ I (3) we set

R
(3)
i,1 = inf{t ≥ 1 ; Xt ∈ Ci , Xt−1 ∈ Ci}, (59)

the first time the walk traversesthe center of Bi , and

D
(3)
i,0 = 0, D

(3)
i,1 = inf{k > R

(3)
i,1 ; Xk /∈ Bi} (60)

the first time after R
(3)
i,1 , the process exits Bi . For i ∈ I (3), we set inductively

R
(3)
i,k+1 = D

(3)
i,k + R

(3)
i,1 ◦ ϑ

D
(3)
i,k

, D
(3)
i,k+1 = R

(3)
i,k+1 + D

(3)
i,1 ◦ ϑ

R
(3)
i,k+1

, (k ≥ 1)

(61)

where ϑ denotes the canonical shift. Using these variables we express the
duration of the k-th visit of Bi up to time n, as follows:

T
(3)
i,k = D

(3)
i,k ∧ n − R

(3)
i,k ∧ n (k ≥ 1) (62)

The total number of visits in Bi will be denoted by V
(3)
i . The total time of

visits of double biased blocks up to time n is given by

S(3)
n =

∑
i∈I (3)

∑
k=1,...,V

(3)
i

T
(3)
i,k (63)

Finally we set

T (0)
n =

{
inf{t ≥ 0 ; Xt /∈ B0} ∧ n; on {B0 is biased}
0 ; otherwise

(64)

A moment thought, using the fact that the time spent visiting biased blocks
which are not double biased blocks is absorbed completely in S(1)

n and S(2)
n ,
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shows that the time until n can be broken up as follows:

n = T (0)
n + S(1)

n + S(2)
n + S(3)

n (65)

In the rest of the paper we will use constants c1, c2, . . . etc., whose values do
not depend on any of the parameters v, n, K, ε, ξ, δ, r, ζ (but may depend
on the distribution α.)

Proposition 2.2 For the parameters as in(29), we have

lim sup
n→∞

n−1/3 log P[A2] ≤ −c1
ζ

r2
(66)

for an appropriate constantc1 > 0. Therefore,

lim sup
ξ→ 0

lim sup
ζ→0

lim sup
ε→0

lim sup
r→0

lim sup
K→∞

lim sup
n→∞

1

n1/3
log P[A2] = − ∞

(67)

Proof. By (65), the probability of the event A2 can be estimated as

P[A2] = P
[
A1, Xn/n ≤ v, T (0)

n + S(2)
n + S(3)

n > n(v/vα + ζ )} ]
≤ P

[
A1, Xn/n ≤ v,

∑
i∈I (2)

∑
k≤V

(2)
i

T
(2)
i,k ≥ nζ/2

]

+ P

[
A1, Xn/n ≤ v, T (0)

n +
∑

i∈I (3)

∑
k≤V

(3)
i

T
(3)
i,k ≥ n(v/vα + ζ/2)

]

=: P1 + P2 (68)

We estimate the probabilities P1 and P2 in two separate Lemmas.

Lemma 4 There exists a constantc2 > 0, such that for alln large enough,

P2 ≤ 3 exp
(− c2 ζ n1/3+2δ

)
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Proof. We set I+(3) = {i ∈ I (3) ; i ≥ 0}, I−(3) = I (3) \ I+(3), and
write

T (0)
n +

∑
i∈I (3)

∑
k≤V

(3)
i

T
(3)
i,k = T (0)

n +
∑

i∈I+(3)

T
(3)
i,1 +

∑
i∈I−(3)

T
(3)
i,1

+
∑

i∈I (3)

∑
2≤k≤V

(3)
i

T
(3)
i,k (69)

The first two summands in (69) correspond to the duration of first visits of
double biased blocks which lie to the “right” of the origin. Since we know
that on A1 there are at most Knδ left crossings of biased blocks, we expect
these two summands to be dominant. We therefore proceed by

P2 ≤ P

[
A1, Xn/n ≤ v, T (0)

n +
∑

i∈I+(3)

T
(3)
i,1 ≥ n(v/vα + ζ/4)

]

+P

[
A1, Xn/n ≤ v,

∑
i∈I−(3)

T
(3)
i,1 +

∑
i∈I (3)

∑
2≤k≤V

(3)
i

T
(3)
i,k ≥ nζ

4

]
=: P4 + P5 (70)

We start with the term P4 and will show that for all n large enough,

P4 ≤ 2 exp
(− c3 ζ n1/3+2δ

)
, (71)

where c3 > 0 is an appropriate constant. For j ≥ 0 we set B̃j = Bj−1 ∪ Bj

and τj = Dj − Rj , where Rj = inf{t ≥ 0 ; Xt = jbnθc} and Dj =
inf{t > Rj ; Xt /∈ B̃j }. Note that P.-a.s., Xn → ∞, cf. [7], hence ∀j ∈ N:
Rj < ∞. Recall that A1 ∩ {Xn/n ≤ v} ⊂ {TU > n}, cf. (20). By setting
j ∗ = b(nv + Kn1/3)/bnθcc and J ∗ = [0, j ∗] ∩ Z, we can easily see that
on A1 ∩ {Xn/n ≤ v}

T (0)
n +

∑
i∈I+(3)

T
(3)
i,1 ≤

∑
j∈J ∗

τj (72)

At this point it is worthwile to recall that on A1, the total length of relevant
double biased blocks is of the order nv. Therefore we expect the bound in
(72) to be rather accurate. Note that, with respect to the annealed measure P,
the variables τj are identically distributed but not independent. However, the
family (τj )j∈2N (as well as (τj+1)j∈2N) is an independent family of random
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variables. Hence, by using Chebyshev’s inequality,

P4 ≤ P

[∑
j∈J ∗

τj ≥ n(v/vα + ζ/4)

]
≤ 2P

[ ∑
j∈J ∗∩2Z

τj ≥ n

2
(v/vα + ζ/4)

]

≤ 2 exp(−λn
2 (v/vα + ζ/4)) (E[eλ τ0 ])(j

∗+1)/2 (73)

where λ > 0. It follows now that for each ε′ ∈ (0, 1) and n large enough,

P4 ≤ 2 exp(−λn
2 (v/vα + ζ/4)) (E[ eλτ0 ])

v
2 (1+ε′)n1−θ

(74)

In order to estimate the exponential moment occurring in (74), we will
use results for the (under P) slightly different stopping time Tn = inf{t ≥
0 ; Xt = bnθc} with mean mn = E[ Tn ]. Using the notation λ = λ/n2θ

and Solomon’s result: mn/nθ → 1/vα, as n → ∞ (cf. [7]) an elementary
calculation shows

P4 ≤ 2 exp
(

− λζ

16
n1−2θ

)
E

[
exp

(
λ

nθ

(τ0 − mn

nθ

))]vn1−θ

(75)

The next lemma, whose proof we defer to the Appendix, provides the nec-
essary estimate on the exponential moment in (75).

Lemma 5 For parameters as in(29) andλ = π2/128, we have for alln
large enough

E

[
exp

(
λ

nθ

(τ0 − mn

nθ

))]
≤ 1 + n−(1/3+2δ) (76)

Putting together the estimates (75) and (76), we arrive at (71) with c3 =
λ/32.

We now turn to the term P5. We claim that for all n large enough

P5 = P

A1, Xn/n ≤ v,
∑

i∈I−(3)

T
(3)
i,1 +

∑
i∈I (3)

∑
2≤k≤V

(3)
i

T
(3)
i,k ≥ ζ n/4


≤ exp

(− c4 ζ n1/3+2δ
)

(77)
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for an appropriate constant c4 > 0. In order to show (77), we follow closely
the steps (32)–(49). Since there are some differences in the arguments, we
will give a reasonably detailed proof. We start by introducing the set of
indices for which the various T

(3)
i,k -s occurring in (77) are strictly positive:

Q = {
(i, k) ∈ (I−(3) × {1, 2, . . .}) ∪ (I+(3) × {2, 3, . . .}) ; T

(3)
i,k > 0

}
We claim that, on the set A1,

0 ≤ Q = |Q| ≤ 2Knδ (78)

Indeed, the lower bound is obvious. In order to establish the upper bound,
we observe that every right crossing (except the first one) of a biased block
has to be preceded by a left crossing of the same block. Moreover, if the
block is contained in (−∞, 0), the first crossing itself is a left crossing (note
that the walk starts at 0). Since the number of all left crossings of biased
blocks is bounded by Knδ, (78) follows. The next step is to equip Q with the
historical order, which we achieve by enumerating all the pairs of indices
(i, k) ∈ Q by attaching an index l = 1, . . . , m to them. Thus, on the set
{Q = m}, we have

0 < R
(3)
i1,k1

< D
(3)
i1,k1

≤ R
(3)
i2,k2

< D
(3)
i2,k2

≤ · · · ≤ R
(3)
il ,kl

< D
(3)
il ,kl

≤ · · · ≤ R
(3)
im,km

< D
(3)
im,km

∧ n (79)

Recall that the sequence (kl)1≤l≤m is completely determined by the (il)-s,
cf. (39). By using Chebyshev’s inequality, we find

P5 = P
[
A1, Xn/n ≤ v,

∑
(i,k)∈Q

T
(3)
i,k > ζ n/4

]

≤ exp(−λ ζ n/4)Eα

[
Eω

[
exp

(
λ
∑

(i,k)∈Q
T

(3)
i,k

)
; Xn/n ≤ v, A1

]]
(80)

The next step is to use the Markov property (with respect to Pω) and derive
estimates uniformly in ω. To this end, for fixed ω, we partition the set
A1 ∩ {Xn/n ≤ v} ∩ �ω (where �ω = {(ω, w); w ∈ W }) according to the
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values of Q and (il)1≤l≤Q. Our goal is to estimate the following expression:

Eω

 exp

(
λ
∑

(i,k)∈Q
T

(3)
i,k

)
; Q = m,

(il)1≤l≤m = (īl)1≤l≤m, Xn/n ≤ v, A1

]
, (81)

where (īl)1≤l≤m is a fixed sequence of indices. The number of all such fixed
sequences with the property

(A1 ∩ {Xn/n ≤ v} ∩ �ω) ∩ {(il)1≤l≤m = (īl)1≤l≤m} 6= ∅ ,

is bounded by 32Knδ

. Indeed, for fixed ω, there are at most 3 possible values
of i1, namely 0, and the indices of the closest double biased blocks to the
right and to the left, respectively. Similarily, given i1, . . . , il , there are only
3 possibilities for the value of il+1. Hence, the number N of sets into which
our set has been partitioned is bounded by

N ≤ 32Knδ

(82)

By conditioning successively on the stopping times R
(3)

ī1,k̄1
, . . . , R

(3)

īm,k̄m
(as

we did in (43)–(46)) we find that the expression in (81) is bounded by∏
1≤l≤m

max
x∈Cīl

Eω
x

[
exp(λD

(3)

īl ,1
)
]

, (83)

where Cīl
stands for the center of the double biased block Bīl

. We estimate
the exponential moment occurring in (83) by using the same stochastic
comparison inequality as in (48) which gives the following bound:

sup
ω∈�

sup
x∈Cīl

Eω
x

[
exp(λD

(3)

īl ,1
)
] ≤ sup

x∈I

Ef
x [exp(λTI )] , (84)

where TI is the exit time from the interval I = [−2bnθc, 2bnθc]. Using
(80), the combinatorial factor (82), (83) and (84), we have

P5 ≤ 32Knδ

exp(−λ ζ n/4) sup
x∈I

Ef
x [exp(λTI )]

2Knδ

(85)

Finally, we apply Lemma 3 in (85) with ρ = 1/2 and λ = π2/(32n2θ )

which gives (77) with c4 = π2/256. This finishes the proof of Lemma 4.
ut

We now come to the investigation of P1 in (68). In view of Lemma 4,
Proposition 2.2 follows once we have shown the next lemma.
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Lemma 6 There exists a constantc5 > 0 such that for alln large enough,

P1 = P

A1, Xn/n ≤ v,
∑

i∈I (2)

∑
k≤V

(2)
i

T
(2)
i,k ≥ nζ/2


≤ exp

(
− c5

ζ

r2
n1/3

)
(86)

Proof. Let us first emphasize the similarity between the times occurring
in the terms P5 and P1. The center of a double biased block corresponds
in an obvious way to a short fair region squeezed in between two biased
blocks. Recall that the visits in double biased blocks begin by traversing the
center and end at a full crossing of one of the biased blocks, while in short
fair regions the visits begin at entering that (short fair) region and end by
crossing one of the attached biased blocks. In order to control the probability
that

∑
i∈I (2)

∑
k≤V

(2)
i

T
(2)
i,k is large, we use again the control provided by

left crossings of the biased blocks attached to the short fair regions. Since
our arguments follow exactly the arguments we used to control the term
P5, we refrain from a detailed proof and indicate only the differences. The
combinatorial complexity occurring here can be estimated as follows. Since
on the set A1 there are at most Knδ fair blocks, the number of short fair
regions is also bounded by the same number. On the other hand, the number
of all visits of short fair regions can be controlled by the number of all such
regions (this estimates the number of first right-crossings) plus two times
the number of all left crossings of biased blocks, as in (78). Therefore, on
the set A1, we have at most 3Knδ visits of short fair regions. This gives the
combinatorial bound 33Knδ

, replacing the factor in (82). Expression (83) is
now replaced by ∏

1≤l≤m

max
x∈F̄(2)

īl

Eω
x

[
exp(λD

(2)

īl ,1
)
]

(87)

The exponential moment can be controlled in the same way as in (84)
(or (50)), except that our interval is now longer. Indeed, |F̄(2)

īl
| ≤ rn1/3 +

2bnθc ≤ 2rn1/3, for n large enough. By using the interval I = [−2rn1/3, 2r

n1/3], applying Lemma 3 with ρ = 1/2 (which gives λ = π2/(32r2n2/3))
we finally have for n large enough

P1 ≤ 33Knδ

χ(1/2)3Knδ

exp

(
− π2

26

ζ

r2
n1/3

)
(88)

This completes the proof of Lemma 6 and that of Proposition 2.2. ut
Finally, the proof of Theorem 2 follows immediately from (30), (28),

(31) and (67).
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Appendix

Here we give the proof of Lemma 5. We recall some definitions and the pre-
cise statement of the lemma. Since we want to emphasize the n-dependence
of the variable τ0, we prefer to use the more suggestive notation Dnθ for
it. More precisely, we set Dnθ = inf

{
t ≥ 0 ; Xt 6∈ {−bnθc − 1, bnθc}}.

Recall the definitions Tnθ = inf{t ≥ 0 ; Xt = bnθc} and mnθ = E[ Tnθ ].

Lemma 5 For parameters as in(29), β = 3δ andλ = π2/128, we have
for all n large enough

E

[
exp

(
λ

nθ

(Dnθ − mnθ

nθ

))]
≤ 1 + n−(β+θ) (89)

Proof. Set Z = (Dnθ − mnθ )/nθ , λ = λ/nθ , α = 5θ/4 and κ = 1/vα. The
exponential moment of Z will be splitted up as follows:

E[ eλZ ] ≤ 1 + λ

∫ n−β

0
eλuP[Z > u] du + λ

∫ κ

n−β

eλuP[Z > u] du

+ λ

∫ nα

κ

eλuP[Z > u] du + λ

∫ ∞

nα

eλuP[Z > u] du

= 1 + I1 + I2 + I3 + I4 (90)

Obviously, I1 ≤ 2λn−(β+θ). We now turn to I3. We have

I3 ≤ exp(λnα) P[Z > κ] (91)

Using that mnθ /nθ → 1/vα, and Dnθ ≤ Tnθ , we find for n large enough:

P[Z > κ] ≤ P
[
Tnθ > nθ

(
κ + 1/(2vα)

) ] ≤ P
[
Xbnθ 3/(2vα)c < nθ

]
(92)

We now apply the estimate in the last line of the proof of Lemma 4.1 in [2],
by choosing v = v(u) and B = B(u) there, as follows. The parameter v is
given by v = (2/3)vα and B = (1−v/vα)

1/3(π2/64| log〈ρ〉|)1/3. Note that
by this choice we have v ∈ (0, vα) and 1/v − 1/vα = 1/(2vα). By setting
cα = (| log〈ρ〉|π/8)2/3, we have for n large enough,

P
[
Xbnθ 3/(2vα)c < nθ

] ≤ exp
(− nθ/3cα/4

)
(93)
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Coming back to (91) we find that for n large enough I3 ≤ exp(−cα nθ/3/8).
We proceed by estimating I4. Using (48) and (52) once again with ε′ = 1/2,
we obtain for all n large enough, and every u ≥ nα,

P [ Z > u ] ≤ P
[
Dnθ > u nθ

] ≤ c′(1/2) exp
(

− u

nθ

π2

64

)
(94)

Using this, we find

I4 ≤ c′(1/2) λ

∫ ∞

nα

exp
(
uλ − uπ2

16nθ

)
du ≤ c′(1/2) exp

(
− nθ/4 π2

128

)
(95)

It remains to estimate I2. We will need the following fact: For δ ∈ (0, 1/24),
β = 3δ and for each γ > 0

lim sup
n→∞

nγ P
[
Z > n−β

]
< ∞ (96)

Let us postpone the proof of (96) and proceed with estimating I2. Using
(96) with γ = 2β, we have for some c > 0 and for every n large enough

I2 ≤ 2λ κn−θ P
[
Z > n−β

] ≤ cn−(θ+2β) , (97)

Thus, putting together all our estimates we arrive at (89).
It remains to show (96). Set M = nθ and β ′ = β/θ . Note that β ′ < 3/7.

Then, for all n large enough

P[ Z > n−β ] ≤ P
[
DM − E[TM ] > M1−β ′ ]

(98)

Note that by the choice of δ, 1 −β ′ > 0. Setting γ ′ = γ /θ , we see that (96)
follows, once we have shown

lim sup
M→∞

Mγ ′
P
[
DM − E[ TM ] > M1−β ′ ]

< ∞ (99)

For M large, we divide N into blocks Ii = [xi, xi + bc log Mc), (i ≥ 0),
where xi = i bc log Mc and c = (1 + γ ′)/| log〈ρ〉|. As next we employ
a comparison technique described in Lemma 2.5, of [2]. On �, we define
another process (Yt )t≥0 and hitting times τ̃i = inf{t ≥ 0 ; Yt = xi}, where
the only difference between (Xt) and (Yt ) is that for t ≥ τ̃i , i ≥ 0, the
process (Yt ) is reflected at xi−1. Note that the variables τ i = τ̃i − τ̃i−1,
i ≥ 1, are well defined (except on a set of zero measure) and identically
distributed under P. Note that TM is stochastically larger than

∑
1≤i≤N τ i ,
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where N = bM/bc log Mcc. Hence,

P
[
DM − E[ TM ] > M1−β ′ ] ≤ P

[
DM −

∑
1≤i≤N

E[ τ i ] > M1−β ′
]
(100)

Consider the set G = {max1≤i≤N Li ≤ bc log Mc}, where Li denotes the
length of the maximal left excursion from xi (up to time ∞) of the walk
(Xt). We have

P

[
DM −

∑
1≤i≤N

E[ τ i ] > M1−β ′
]

≤ P

[
{DM −

∑
1≤i≤N

E[ τ i ] > M1−β ′ } ∩ G

]
+ P

[
Gc
]

(101)

Using the fact that on the set G, DM = ∑N
i=1 τ i , and applying Lemma 2.2

in [2], we obtain

P
[
DM − E[ TM ] > M1−β ′ ]

≤ P

[
N∑

i=1

(τ i − E(τ i)) > M1−β ′
]

+ M−γ ′

〈ρ〉(1 − 〈ρ〉) (102)

In order to estimate the first term on the r.h.s. of (102), we need to bound
the t-th moment of the variable τ 1 for an appropriate t > 0. Denote by τ1

the first time the RWRE hits the point [c log M]. Given a small parameter
ε > 0 and ω ∈ �, we set for all x ∈ Z

ωx(ε) =
{

ωx ; ωx > 1/2
1/2 − ε ; ωx = 1/2

and look at the the RWRE with respect to the measure on the path space
Pε = ∫

Pω(ε)[ · ] P(dω). We then have

E[ τ t
1 ] ≤ E[ τ t

1 ] ≤ Eε[ τ t
1] ≤ bc log Mct Ct (103)

for a constant 0 < Ct < ∞, where we used the estimate (11) in [2]. Note
that this estimate can be applied here if we choose ε small enough (which
ensures that the parameter s in Theorem 1.1 of [2] is larger than our t).
Recall that (τ 2i) are i.i.d. variables under P. We can now apply Corollary
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1.8 from Nagaev [5] with t > 2 ∨ (1 + γ ′)/(1 − β ′), obtaining thereby

P

[
N∑

i=1

(τ i − E[ τ i ]) > M1−β ′
]

≤ 2 P

[
N/2∑
i=1

(τ 2i − E[ τ 2i ]) >
1

2
M1−β ′

]

≤ 2t (1 + 2/t)t N E[ τ t
1 ] M−t (1−β ′) + 2 exp

(
− M2(1−β ′)

et (2 + t)NE[ τ 2
1 ]

)
≤ 2t (1 + 2/t)t 2Ct(c log M)t−1 M−t (1−β ′)+1

+ 2 exp
(

− 1

et (2 + t)

M1−2β ′

C2 (c log M)

)
(104)

Recalling that that t > 2 ∨ (1 + γ ′)/(1 − β ′) and 1 − 2β ′ > 1/7, we easily
conclude from (104) that

lim
M→∞

Mγ ′
P

[
N∑

i=1

(τ i − E(τ i)) > M1−β ′
]

= 0 (105)

This, together with (102) shows (99) and the proof of Lemma 5 is complete.
ut
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