Durrett Chapter 3 Exercises

2.2: Convergence of Maxima.
2.6 The Levy metric.
2.13 Converging together lemma.

1. Show that, given X, we can find random variables X_n such that each X_n takes only finitely many values but $X_n \overset{d}{\to} X$.

2. Suppose X has a continuous density f. Let $\delta_n \downarrow 0$. Suppose X_n takes only values which are integer multiples of δ_n. And suppose that

$$ k_n \delta_n \to x \implies \frac{P(X_n = k_n \delta_n)}{\delta_n} \to f(x). $$

Show that $X_n \overset{d}{\to} X$.

3. For real $x > 0$ let $\text{dec}(x)$ be the decimal part of x, and let $\text{sig}(x)$ be the first significant digit of x. Thus

$$ \text{dec}(83.472) = 0.472, \quad \text{sig}(83.472) = 8. $$

Let $X_n > 1$ be r.v.’s such that $\text{dec}(\log_{10} X_n) \overset{d}{\to} U$, where U is uniform on $(0, 1)$. Prove that $\text{sig}(X_n) \overset{d}{\to} D$ where D has a certain distribution (which you should specify) on $\{1, 2, \ldots, 9\}$.

Remark. **Benford’s law** asserts that, in real-world data where entries differ by several orders of magnitude, the observed distribution of first significant digit is approximately D.

205B Homework #2, due Tuesday February 7

Durrett, Chapter 3, section 3, Exercises 1, 3, 5, 6, 7, 13, 15, 17, 18, 19, 22, 23.

[Note most of these have short proofs – nothing complicated is needed.]
4. Let \((X_j, j \geq 1)\) be independent and take values \((-2j^2, -j, 0, j, 2j^2)\) with

\[
P(X_j = -2j^2) = P(X_j = 2j^2) = \frac{1}{12j^2}
\]

\[
P(X_j = -j) = P(X_j = j) = \frac{1}{12}.
\]

Show that the Lindeberg condition is not satisfied. Show that nonetheless there exist constants \(b_n\) (which you should specify) such that

\[
\frac{1}{b_n} \sum_{j=1}^{n} X_j \overset{d}{\rightarrow} \text{Normal}(0, 1).
\]
Durrett Chapter 3 Exercises 9.5, 3.27, 3.28.

5. Let U and V be independent, uniform $[0,1]$. Define $Y_n = nU - \lfloor nU \rfloor$. Show that $$(U,Y_n) \overset{d}{\to} (U,V).$$

6. Let $Q = Q(x,A)$ be a kernel from \mathbb{R} to \mathbb{R}. For each $1 \leq n \leq \infty$ let (X_n,Y_n) be such that Q is the conditional probability kernel for Y_n given X_n. Suppose $X_n \overset{d}{\to} X_\infty$. Give an example to show that $$\quad (X_n,Y_n) \overset{d}{\to} (X_\infty,Y_\infty) \quad (\ast)$$ is not necessarily true. Show that either of the following two extra assumptions is sufficient to imply (\ast).
 (a) For each $1 \leq n \leq \infty$ there is a density f_n for X_n, and $\int |f_n(x) - f_\infty(x)|dx \to 0$.
 (b) $Q(x_m,\cdot) \to Q(x,\cdot)$ weakly whenever $x_m \to x$.

7. Give an example of a distribution (Y_1,Y_2) such that Y_1 and Y_2 are Normal($0,1$) but the joint distribution is not bivariate Gaussian.

8. Let (X_1,X_2) be bivariate Gaussian with $\mathbb{E}X_1^2 = \mathbb{E}X_2^2 = 1$ and $\mathbb{E}X_1X_2 = \rho$. Calculate $\mathbb{P}(X_1 > 0, X_2 > 0)$.
 [Hint: for independent standard Normals (Z_1,Z_2) the density is rotationally invariant]

9. For integers $x \geq 0, k \geq 1$ write $[x]_k = x(x-1)\ldots(x-k+1)$. Prove that, for positive integer-valued r.v.'s $X(n)$,

 if $\mathbb{E}[X(n)] \to \lambda^k$ as $n \to \infty$, for each $k \geq 1$

 then $X(n) \overset{d}{\to} \text{Poisson}(\lambda)$.

Durrett Chapter 6 Exercises 2.7, 2.8, 2.9, 3.10, 3.11, 3.12

10. Give an example to show that, if X_n is a Markov chain and f a function defined on its state space, then $f(X_n)$ need not be a Markov chain.

11. Show that for $K < \infty$ and $a > 0$ there is a constant $C(K, a) < \infty$ such that: in every finite irreducible chain

$$\max_{i,j} E_i T_j \leq C(K, a)$$

where $K =$ number of states and $a = \min\{p(i,j) : p(i,j) > 0\}$.
Let X_n be an irreducible chain with transition matrix P. Let Y_n be the
\textit{jump chain} $Y_n = X(T_n)$ where $T_0 = 0$ and
\[T_{n+1} = \min\{m > T_n : X_m \neq X(T_n)\}. \]

(a) Show that Y_n is Markov, and write its transition matrix Q in terms of
P.
(b) Show that (Y_n) is recurrent iff (X_n) is recurrent.
(c) Assuming recurrence, find the relation between the P-invariant measure
and the Q-invariant measure.
(d) Deduce that, on an infinite state space, it is possible for (Y_n) to be
positive-recurrent while (X_n) is not.

Let X_n be an finite irreducible chain with transition matrix P. Fix a
subset A of S. Define a transition matrix Q on A by
\[q(i, j) = p(i, j)/\sum_{k \in A} p(i, k). \]

Suppose Q is irreducible. In the case where P is \textit{reversible}, find a simple explicit formula for the stationary distribution π^* of Q in terms of P and its stationary distribution π. Give an example to show that the formula may not hold in the non-reversible case.
205B homework, #7; due Tuesday March 14

Durrett Chapter 6 Exercises 6.6, 6.7

14. Let \((X_n)\) be an irreducible Markov chain on \(S\) with transition matrix \((p(x, y))\). Let \(B\) be a finite subset of \(S\) such that the chain a.s. visits \(B\) infinitely often. Let \((Z_m)\) be the chain watched only on \(B\). Then \(Z\) is irreducible, and so has stationary distribution \(\hat{\pi}\), say. Define

\[
\mu(x, y) = \mathbb{E}_x \sum_{n=0}^{\infty} 1_{\{X_n=y, T_B>n\}}, \quad x \in B, \ y \in S.
\]

\[
\pi(y) = \sum_{x \in B} \hat{\pi}(x) \mu(x, y).
\]

Show that \(\pi\) is invariant, in the sense

\[
\pi(y) = \sum_{z \in S} \pi(z) p(z, y) \leq \infty, \ y \in S.
\]

15. A population consists of \(X_n\) individuals at times \(n = 0, 1, 2, \ldots\). Between time \(n\) and time \(n + 1\) each of these individuals dies with probability \(p\) independently of the others; and the population at time \(n + 1\) consists of the survivors together with an independent random (Poisson \((\lambda)\)) number of immigrants.

Let \(X_0\) have arbitrary distribution. What happens to the distribution of \(X_n\) as \(n \to \infty\)? [Hint: consider first the case where \(X_0\) has Poisson \((\lambda_0)\) distribution]
16. Let X_n be the Markov chain on states $0, 1, \ldots, K$ with transition matrix

$$p(i, i + 1) = \frac{2}{3} \text{ and } p(i, i - 1) = \frac{1}{3}; \ 1 \leq i \leq K - 1$$

and initial state $i_0 \neq 0, K$. Let X_n^* be the process X_n conditioned on the event $\{X_m = K \text{ ultimately}\}$.

(a) Prove carefully that X_n^* is Markov.

(b) Find its transition matrix.

(c) Find the distribution of $\min_{n \geq 0} X_n^*$.

17. Let S be a finite set. Let $p(i, j)$ be an irreducible Markov transition matrix on S, with stationary distribution π. Consider a cat-and-mouse game, as follows. A state i is chosen at random according to π; the cat and mouse are both placed at i, but before the cat can do anything the mouse jumps to another state chosen according to $p(i, \cdot)$. Thereafter, the mouse doesn’t move. The cat now searches for the mouse by moving at random according to the “time-reversed” Markov chain, i.e. the chain with transition matrix

$$q(i, j) = \pi(j)p(j, i)/\pi(i).$$

Find a simple formula for the expected number of steps taken by the cat until it finds the mouse.

[more questions on next page]
18. Let \(P = p(i, j) \) be a Markov transition matrix on \(\{0, 1, 2, \ldots\} \). Give a simple necessary and sufficient condition, in terms of \(P \), for the following assertion to be true.

For any pair \(i_0 < j_0 \) it is possible to construct \((X_n, Y_n; n \geq 0) \) such that

1. \(X \) is the \((i_0, P)\)-chain
2. \(Y \) is the \((j_0, P)\)-chain
3. \(X_n \leq Y_n \) for all \(n \).

19. Let \((X_n) \) be irreducible positive-recurrent with stationary distribution \(\pi \). Fix a subset \(B \) of \(S \). Let

\[
T_B = \min\{n \geq 1 : X_n \in B\}.
\]
\[
A_{kn} = \{X_m \in B^c \text{ for all } k \leq m \leq n\}.
\]

(a) Show that for the stationary chain, \(\mathbb{P}(A_{kn}) \) depends only on \(n - k \), and deduce that for the stationary chain

\[
\mathbb{P}(X_0 \in B, T_B \geq n) = \mathbb{P}(T_B = n).
\]

(b) Use (a) to give a new proof that \(\mathbb{E}_i T_i = 1/\pi(i) \).

(c) Use (a) to prove

\[
\mathbb{E}_i (T_i^2) = 2\mathbb{E}_i T_i (\sum_j (\mathbb{E}_j T_i / \mathbb{E}_j T_j) - 1).
\]

20. Let \((X_n; n \geq 0) \) be a finite-state irreducible Markov chain. Write \(\pi \) for the stationary distribution and

\[
T_j = \min\{n \geq 0 : X_n = j\}
\]

for the first hitting time.

(a) Prove that \(\sum_j \pi_j \mathbb{E}_i T_j \) does not depend on \(i \).

(b) Give an example to show that \(\sum_i \pi_i \mathbb{E}_i T_j \) may depend on \(j \).
21. Let \((X_n)\) be an irreducible Markov chain on states \(I = \{0, 1, 2, \ldots\}\). Let
\(g : I \rightarrow \mathbb{R}\) be such that
(a) \(\mathbb{E}_i g(X_1) \geq g(i)\) for all \(i\), with strict inequality for some \(i\).
(b) \(\sup_i \mathbb{E}_i |g(X_1) - g(i)| < \infty\).
Prove that \((X_n)\) is not positive-recurrent. Give an example to show it may be null-recurrent.

22. Let \((X_n : n \geq 0)\) be a non-homogeneous Markov chain on states \(\{1, 2, \ldots, K\}\). Let \(\mathcal{T}\) be its tail \(\sigma\)-field. Prove that there exists a partition \((B_1, \ldots, B_m)\), \(m \leq K\) of \(\Omega\) such that \(\mathcal{T} = \sigma(B_1, \ldots, B_m)\) up to null sets.
[Hint. Consider \(\mathbb{E}(Z|X_n)\) for tail-measurable \(Z\).]

23. Let \((X_n, n \geq 0)\) be a finite-state irreducible Markov chain with transition matrix \(P\). Let \(f\) be a non-constant real-valued function and \(0 < \lambda < 1\) be such that \(\sum_j p_{ij} f(j) = \lambda f(i) \ \forall i\).
(i) Show that \(\lambda^{-n} f(X_n)\) is a martingale.
(ii) Let \(\tau_b\) be the first hitting time on a state \(b\). Show that
\[\sup \{\theta : \mathbb{E}(\theta^{\tau_b}|X_0 = i) < \infty \ \forall i\} \leq 1/\lambda.\]

[more questions on next page]
24. Let \(p(i, j) \) be a Markov transition matrix on \(\{0, 1, 2, \ldots, K\} \) such that 0 and \(K \) are absorbing, \(\{1, 2, \ldots, K-1\} \) forms a strongly connected component and
\[
\sum_j j p(i, j) = i \quad \text{for each} \quad 0 \leq i \leq K.
\]

Fix \(B \geq 2 \). Define a Markov process \((X_n; n \geq 0)\) on state-space \(\{1, 2, \ldots, K\}^B \) as follows. A state \((x(1), \ldots, x(B))\) represents the positions of \(B \) particles, particle \(b \) being in position \(x(b) \). Initially all particles are at position \(i_0 \), for some \(1 \leq i_0 \leq K-1 \). A step of the process \(X \) is as follows. Pick one of the particles uniformly at random, and let it perform a move according to \(p(\cdot, \cdot) \). If the move takes the particle to a position which is not 0, that concludes the step of \(X \). Otherwise the particle tries to move to 0, in which case it is immediately replaced at the position of another particle, picked uniformly at random from the other \(B-1 \) particles. Call this latter move a 0-jump.

Ultimately the process will reach the absorbing state with all particles in position \(K \). Let \(N \) be the random total number of 0-jumps made. Prove

\[
\mathbb{E} \left(\left(\frac{B-1}{B} \right)^N \right) = \frac{i_0}{K}.
\]

What can you deduce about \(\mathbb{E}N \)?

[Hint: Let \(A_n \) be the average position of the \(B \) particles after \(n \) steps. Find a martingale related to \(A_n \).]
205B Homework #10; due Tuesday April 11

Durrett Chapter 7 Exercises 1.6, 3.1, 3.3, 3.4
205B Homework #11; due Tuesday April 18

Durrett Chapter 7 Exercises 4.1, 5.1, 5.2, 5.4.
TBA