
Chapter 7

Coding and entropy

Note. At Berkeley, information theory is taught in a graduate course but not an

undergraduate one, so I assume my students have not seen any of this material.

The final section summary should be comprehensible even if all the math is skipped.

Figure 7.1: xkcd.com/936

103

104 CHAPTER 7. CODING AND ENTROPY

7.1 Introduction

In an earlier survey I asked students to write down a common five-letter
English word. I start this lecture by showing the xkcd cartoon in Figure
7.1 and then demonstrate the cartoon’s essential truth by using a password
strength checker to assess the strengths of
• a concatenation of 4 of the students’ words
• a volunteer student’s password.
Invariably the former is judged “strong” or “very strong” and the latter
“weak” or “medium”.

This lecture introduces a few topics from a big field known misleadingly
as Information Theory – see the “further reading” section 7.10. Each of the
words coding and entropy have rather specific meanings in this lecture, so I
first must explain these meanings.

7.2 Entropy as a measure of unpredictability

For a probability distribution over numbers – Binomial or Poisson, Normal or
Exponential – the mean or standard distribution are examples of “statistics”
– numbers that provide partial information about the distribution. Consider
instead a probability distribution over an arbitrary finite set S. Simple
concrete examples we have in mind for S are
(i) Relative frequencies of given names (Table 7.1)1.
(ii) Relative frequencies of letters in the English language (Figure 7.2)

Table 7.1: 2013 U.S. births given names.

Rank Male name Percent of total males Female name Percent of total females
1 Noah 0.9043% Sophia 1.1039%
2 Liam 0.8999% Emma 1.0888%
3 Jacob 0.8986% Olivia 0.9562%
4 Mason 0.8793% Isabella 0.9161%
5 William 0.8246% Ava 0.7924%
6 Ethan 0.8062% Mia 0.6844%

(iii) Relative frequencies of words in the English language.

1The extensive such data from the Social security site is an interesting source for
student projects.

7.2. ENTROPY AS A MEASURE OF UNPREDICTABILITY 105

Figure 7.2: Relative frequencies of letters in the English language (from
Wikipedia)

(iv) Relative frequencies of phrases in the English language2.

For a probability distribution p = (p
s

, s 2 S) on such sets S it does not
make sense to talk about mean or standard deviation. But it does make
sense to devise statistics that involve only the unordered set of values {p

s

},
and the particular statistic relevant to this lecture is

E(p) := �
X

s

p
s

log p
s

which is called the entropy of the probability distribution p. This terminol-
ogy is confusing, patly because “entropy” is often used for what is properly
called entropy rate (section 7.4), and partly because of the only indirectly
related notion of entropy in statistical physics.

A basic fact is that the uniform distribution on an n-element set has
entropy = log n whereas the “degenerate” distribution concentrated at a
single element has entropy zero. The entropy statistic serves to place a
distribution on the spectrum from degenerate to uniform; entropy is of de-
scribed as “amount of randomness” but for our purposes is better regarded
as a measure of unpredictability. Note that many other statistics serve the
same general purpose, as discussed further in Lecture xxx under the phrase
diversity statistic.

2See the Google Books Ngram Viewer, which has various interesting uses. To see usage
of data as singular or plural, compare frequencies of “the data is” and “the data are”.

106 CHAPTER 7. CODING AND ENTROPY

A good way to interpret the numerical value of E(p) is via the “e↵ective
number” N

e↵

– the number3 such that the uniform distribution on N
e↵

ele-
ments has the same statistic. See section xxx for an illustration concerning
the changes over time in the diversity of given names (Table 7.1).

Entropy in physics. The reader has likely seen a statement of the second
law of thermodynamics in a verbal form such as

the total entropy of any isolated thermodynamic system increases
over time, approaching a maximum value

and the informal description of entropy as a measure of disorder. When
expressed in mathematical terms one can indeed see connections between
this physics formulation of entropy and our definition of E(p), but this con-
nection is not particularly helpful for an introductory treatment of the topic
of this lecture.

7.3 Coding, compression and encryption

The word coding nowadays primarily means “writing computer code” but
here we are concerned with representing data in some convenient form. A
simple example is the original ASCII scheme (section 7.6) for representing
letters and typewriter symbols in binary. In choosing how to code a partic-
ular type of data there are several issues one might consider.

• Compression: coding to make a text shorter

is useful both in data storage and in data transmission, because there is
some “cost” both to storage space and transmission time.

• Encryption: coding for secrecy

is familiar from old spy novels and from modern concerns about security of
information sent over the internet. These di↵er in an obvious way. Com-
pressing files on your computer will produce, say, a .zip file, and the al-
gorithms for compressing and decompressing are public. Encryption algo-
rithms in widespread use are commonly like public-key cryptography in that
the logical form of the algorithms for encryption and decryption are public,
but a private key (like a password) is required to actually perform decryp-
tion. In contrast, intelligence agencies presumably use algorithms whose

3The solution of E(p) = logN
e↵

, typically not actually an integer.

7.3. CODING, COMPRESSION AND ENCRYPTION 107

form is secret. For concreteness, in this lecture I talk in terms of coding
English language text, but the issues are the same for any kind of data.

A third issue I will not discuss is

• robustness under errors in data transmission: error-correcting code

Intuitively there seems no particular connection between encryption and
compression – if anything, they seem opposites, involving secrecy and open-
ness. But a consequence of the mathematical theory outlined in this lecture
is that

(*) finding good codes for encryption is the same as finding good
codes for compression.

Here is a verbal argument for (*). A code or cipher transforms plaintext
into ciphertext. The simplest substitution cipher transforms each letter into
another letter. Such codes – often featured as puzzles in magazines – are
easy to break using the fact that di↵erent letters and letter-pairs occur in
English (and other natural languages) with di↵erent frequencies. A more ab-
stract viewpoint is that there are 26! possible “codebooks” but that, given a
moderately long ciphertext, only one codebook corresponds to a meaningful
plaintext message.

Now imagine a hypothetical language in which every string of letters like
QHSKUUC . . . had a meaning. In such a language, a substitution cipher
would be unbreakable, because an adversary seeing the ciphertext would
know only that it came from of 26! possible plaintexts, and if all these are
meaningful then there would be no way to pick out the true plaintext. Even
though the context of secrecy would give hints about the general nature of a
message – say it has military significance, and only one in a million messages
has military significance – that still leaves 10�6 ⇥ 26! possible plaintexts.

Returning to English language plaintext, let us think about what makes
a compression code good. It is intuitively clear that for an ideal coding
we want each possible sequence of ciphertext to arise from some meaningful
plaintext (otherwise we are wasting an opportunity); and it is also intuitively
plausible that we want the possible ciphertexts to be approximately equally
likely (this is the key issue that the mathematics deals with).

Suppose there are 21000 possible messages, and we’re equally likely to
want to communicate each of them. Then an ideal code would encode each as
a di↵erent 1000-bit (binary digit) string, and this could be a public algorithm
for encoding and decoding. Now consider a substitution code based on the
32 word “alphabet” of 5-bit strings. Then we could encrypt a message by

108 CHAPTER 7. CODING AND ENTROPY

(i) apply the public algorithm to get a 1000-bit string;
(ii) then use the substitution code, separately on each 5-bit block.
An adversary would know we had used one of the 32! possible codebooks
and hence know that the message was one of a certain set of 32! plaintext
messages. But, by the “approximately equally likely” part of the ideal coding
scheme, these would be approximately equally likely, and again the adversary
has no practical way to pick out the true plaintext.

Conclusion: given a good public code for compression, one can easily
convert it to a good code for encryption.

7.4 The asymptotic equipartition property

We now jump into math theory to state a non-elementary result, and accom-
pany it with some discussion. The basis of the mathematical theory is that
we model the source of plaintext as random “characters” X

1

, X
2

, X
3

, . . .
in some “alphabet”. It is important to note that we do not model them
as independent (even though I use independence as the simplest case for
mathematical calculation later) since real English plaintext obviously lacks
independence. Instead we model the sequence (X

i

) as a stationary process,
which implies that there is some probability that three consecutive char-
acters are CHE, but this probability does not depend on position in the
sequence, and we don’t make any assumptions about what the probability
is.

To say the setup more carefully, for any sequence of characters (x
1

, . . . , x
n

)
there is a likelihood

`(x
1

, . . . , x
n

) = P(X
1

= x
1

, . . . , X
n

= x
n

).

The stationarity assumption is that for each time t and each sequence
(x

1

, . . . , x
n

)

P(X
t+1

= x
1

, . . . , X
t+n

= x
n

) = P(X
1

= x
1

, . . . , X
n

= x
n

). (7.1)

Consider the empirical likelihood

L
n

= `(X
1

, . . . , X
n

)

which is the prior chance of seeing the sequence that actually turned up.
The central result (non-elementary; I teach it in a graduate course as the
Shannon-McMillan-Breiman theorem) is

7.4. THE ASYMPTOTIC EQUIPARTITION PROPERTY 109

The asymptotic equipartition property (AEP) . For a stationary er-
godic4 source, there is a number Ent, called the entropy rate of the source,
such that for large n, with high probability

� log
2

L
n

⇡ n⇥ Ent.

The rest of this section is the mathematical discussion of the theorem that I
say in class. I’m not going to attempt to translate it for the general reader,
who should skip to the next section to see the relevance to coding. It is
conventional to use base 2 logarithms in this context, to fit nicely with the
idea of coding into bits.

For n tosses of a hypothetical biased coin with P(H) = 2/3,P(T) =
1/3, the most likely sequence is HHHHHH . . .HHH, which has likelihood
(2/3)n, but a typical sequence will have about 2n/3 H’s and about n/3 T’s,
and such a sequence has likelihood ⇡ (2/3)2n/3(1/3)n/3. So

log
2

L
n

⇡ n(2
3

log
2

2

3

+ 1

3

log
2

1

3

).

Note in particular that log-likelihood behaves di↵erently from the behavior
of sums, where the CLT implies that a “typical value” of a sum is close to
the most likely individual value.

Recall that the entropy of a probability distribution q = (q
j

) is defined
as the number

E(q) = �
X

j

q
j

log
2

q
j

. (7.2)

The AEP provides one of the nicer motivations for the definition, as follows.
If the sequence (X

i

) is IID with marginal distribution (p
a

) then for x =
(x

1

, . . . , x
n

) we have

`(x) =
Y

a

pna(x)
a

where n
a

(x) is the number of appearances of a in x. Because n
a

(X
1

, . . . , X
n

) ⇡
np

a

we find

L
n

⇡
Y

a

pnpa
a

� log
2

L
n

⇡ n

�
X

a

p
a

log
2

p
a

!
.

4The formal definition of ergodic is hard to understand; basically we exclude a source
that flips a coin to choose between “all English” and “all Russian”.

110 CHAPTER 7. CODING AND ENTROPY

So the AEP identifies the entropy rate of the IID sequence with the entropy
E = �

P
a

p
a

log
2

p
a

of the marginal distributions X.
Let me mention three technical facts.
Fact 1. (easy). For a 1-1 function C (that is, a code that can be be

decoded precisely), the distributions of a random item X and the coded
item C(X) have equal entropy.

Fact 2. (easy). Amongst probability distributions on an alphabet of
size B, entropy is maximized by the uniform distribution, whose entropy is
log

2

B. So for any distribution on binary strings of length m, the entropy is
at most log

2

2m = m.
Fact 3. (less easy). Think of a string (X

1

, . . . , X
n

) as a single random
object. It has some entropy E

k

. In the setting of the AEP,

k�1E
k

! Ent as k ! 1.

Finally a conceptual comment. Identifying the entropy rate of an IID
sequence with the entropy of its marginal distribution indicates that entropy
is the relevant summary statistic for the non-uniformness of a distribution
when we are in some kind of multiplicative context. This is loosely analogous
to the topic of Lecture 2, the Kelly criterion, which is tied to “multiplicative”
investment.

7.5 Entropy rate and minimum code length

Here we will outline in words the statement and proof of the fundamental
result in the whole field. The case of an IID source (recall section 2.2) is
Shannon’s source coding theorem from 1948. The “approximation” is as
n ! 1.

A string of length n from a source with entropy rate Ent can be coded
as a binary string of length ⇡ n⇥ Ent but not of shorter length.

More briefly, the optimal coding rate is Ent bits per letter.

Why not shorter? Think of the entire message (X
1

, . . . , X
n

) as a single
random object. The AEP says the entropy of its distribution is approxi-
mately n ⇥ Ent. Suppose we can code it as a binary string (Y

1

, . . . , Y
m

) of
some length m. By Fact 1, the entropy of the distribution of (Y

1

, . . . , Y
m

)
also ⇡ n ⇥ Ent, whereas by Fact 2 the entropy is at most m. Thus m is
approximately � n⇥ Ent as asserted.

7.6. MORSE CODE AND ASCII 111

How to code this short. We give an easy to describe but completely
impractical scheme. Saying that a typical plaintext string has chance about
1 in a million implies there must be around 1 million such strings (if more
then the total probability would be > 1; if less then with some non-negligible
chance a string has likelihood not near 1 in a million). So the AEP implies
that a typical length-n string is one of the set of about 2n⇥Ent strings which
have likelihood about 2�n⇥Ent (and this is the origin of the phrase asymptotic
equipartition property). So in principle we could devise a codebook which
first lists all these strings as integers 1, 2, . . . , 2n⇥Ent, and then the com-
pressed message is just the binary expansion of this integer, whose length is
log

2

2n⇥Ent = n ⇥ Ent. So a typical message can be compressed to length
about n⇥Ent; atypical messages (which could be coded in some non-e�cient
way) don’t a↵ect the limit assertion.

The second argument is really exploiting a loophole in the statement. View-
ing the procedure as transmission, we imagine that transmitter and receiver
are using some codebook, but we placed no restriction on the size of the
codebook, and the code described above uses a ridiculously large and im-
practical codebook,

The classical way to get more practical codes is by fixing some small k
and coding blocks of length k, Thus requires a codebook of size Ak, where
A is the underlying alphabet size. However, making an optimal codebook
of this type requires knowing the frequencies of blocks that will be pro-
duced by the source. Rather than explain further, we shall jump (after a
brief historical digression) to more modern codes that don’t assume such
knowledge..

7.6 Morse code and ASCII

Invented around 1840, Morse code codes each letter and numeral as a se-
quence of dots and dashes: for instance T is � and Z is ��••. Logically this
is like coding into a three-letter alphabet, because one also needs to indicate
(by a pause) the spaces between letters. As is intuitively natural, common
letters (like T) are coded as short sequences and uncommon letters (like Z)
are coded as longer sequences. Given frequencies of letters, there is a the-
oretical optimal way (Hu↵man coding) to implement such a variable length
code, and this has the same intuitive feature. But it’s important to note
that Hu↵man coding is optimal only amongst codes applied to individual
letters, and depends on known fixed frequencies for letters.

Developed in the 1960s, ASCII codes letters, numerals and other symbols

112 CHAPTER 7. CODING AND ENTROPY

into 128 7-bit strings: for instance T is 101 0100 and Z is 101 1010. At first
sight it may seem surprising that ASCII, and its current extension unicode,
don’t use variable length codes as did Morse code. But the modern idea is
that with any kind of original data one can first digitize into binary in some
simple way, and then compress later if needed.

7.7 Lempel-Ziv algorithms

In the 1970s it was realized that with computing power you don’t need a
fixed codebook at all – there are schemes that are (asymptotically) optimal
for any source. Such schemes are known as Lempel-Ziv style5 algorithms,
though the specific version described below, chosen as easy to describe, is
not the textbook form.

Suppose we want to transmit the message

010110111010|011001000

and that we have transmitted the part up to |, and this has been decoded by
the receiver. We will next code some initial segment of the subsequent text
011001000 To do this, first find the longest initial segment that has
appeared in the already-transmitted text. In this example it is 0110 which
appeared in the position shown.

010110111010|011001000

Writing n for the position of the current (first not transmitted) bit, let
n� k be the position of the start of the closest previous appearance of this
segment, and ` for the length of the segment. In the example, (k, `) = (10, 4).
We transmit the pair (k, `); the receiver knows where to look to find the
desired segment and append it to the previously decoded text. Now we just
repeat the procedure:

0101101110100110|01000

the next maximal segment is 0100 and we transmit this as (7, 4).
How e�cient is this scheme? We argue informally as follows. When we’re

a long way into the text – position n say – we will be transmitting segments
of some typical length ` = `(n) which grows with n (in fact it grows as order
log n but that isn’t needed for this argument). By the AEP the likelihood

5The current Wikipedia article is not so helpful for the general reader.

7.8. CHECKING FOR YOURSELF 113

of a particular typical such segment is about 2�`⇥Ent and so the distance
k we need to look back to find the same segment is order 2+`⇥Ent. So to
transmit the pair (k, `) we need log

2

`+ log
2

k ⇡ `⇥ Ent bits. Because this
is transmitting ` letters of the text, we are transmitting at rate Ent bits per
letter, which is the optimal rate.

7.8 Checking for yourself

On my Mac I can use the Unix compress command, which implements one
version of the Lempel-Ziv algorithm. A simple theoretical prediction is that
if you take a long piece of text, split it into two halves of equal uncompressed
length, and compress each half separately, then the two compressed halves
will be approximately the same length. It takes only a few minutes to
check an example. I used a text of Don Quixote, in English translation,
downloaded from Project Gutenberg.

Table 7.2: Bytes in Don Quixote

uncompressed compressed
first half 1109963 444456

second half 1109901 451336
whole 2219864 895223

The prediction works pretty well. Further predictions can be made based on
the notion that the algorithm incurs some “start-up cost” before the coding
becomes e�cient, implying

• The compressed size of a complete text will be shorter than the sums
of compressed sizes of its parts. (We see this in the example above,
though the di↵erence is very small).

• For a text broken into pieces of di↵erent sizes, the compression ratio
for the pieces will be roughly constant but also will tend to decrease
slightly as size increases.

To illustrate the latter, I used the LATEX text of the Grinsted-Snell textbook
Introduction to Probability.

114 CHAPTER 7. CODING AND ENTROPY

Table 7.3: Bytes in Grinsted-Snell

chapter uncompressed compressed ratio
1 101082 46029 .465
2 73966 32130 .434
3 139490 61571 .441
4 123784 53962 .436
5 100155 43076 .430
6 134256 57577 .429
7 39975 18021 .451
8 39955 18759 .470
9 90019 39853 .443

10 79560 35058 .441
11 166626 69181 .415
12 56463 25299 .448

7.9 . . . but English text is not random

So one could just demonstrate that compression algorithms work in practice
on natural English text, and stop. But this doesn’t address a conceptual
issue.

(B) If you designed a vehicle to work well as an airplane, you
wouldn’t expect it to work well as a submarine. So why do al-
gorithms, designed to work well on random data, in fact work
well in the completely opposite realm of meaningful English lan-
guage?

A standard explanation goes as follows. Do we expect that the frequency
of any common word (e.g. “the”) in the second half of a book should be
about the same as in the first half? Such “stabilization of frequencies” seems
plausible – we are not looking at meaning, just syntax, which doesn’t change
through the book. This idea of “the rules are not changing” suggests the
analogy between written text and a deterministic physical system. An iconic
mental picture of the latter is “frictionless billiard balls” which, once set in
motion, continue bouncing o↵ each other and the table sides forever. For
certain kinds of such physical systems, ergodic theory predicts “stabilization
of frequencies” – e.g. the proportion of time a ball spends near a corner
should be about the same in the first hour as in the second hour. One can

7.10. WRAP-UP AND FURTHER READING 115

introduce randomness into the story by taking, for the physical system, a
random time as “time 0”, or a random page as “page 0” in a text, and
then counting time relative to this start. And the notion of “stabilization
of frequencies” turns out to be mathematically equivalent to saying that
by a special choice of a random initial state (e.g. what we would see at a
time chosen at random from a very long time interval) one sees a stationary
random process in the sense (7.1). Granted this as a model for English text,
we get both “stabilization of frequencies” and the theory for coding that we
described earlier, as mathematical consequences.

What is unsatisfactory about that explanation? Well, we are asked to
accept, in this particular setting of writing text, the analogy between con-
scious decisions and a physical system. But it is hard to think of another
setting where conscious decisions of a single individual can reasonably be
modeled probabilistically, so it begs the question of what is so special about
writing text.

7.10 Wrap-up and further reading

For the topic of this lecture

• There is extensive mathematical theory, and algorithms based on the
theory are used widely.

• Some consequences of theory are readily checkable.

• The use of probability is conceptually subtle. We don’t think of speech
or writing as random in everyday life, not does it fit naturally into neat
philosophical categories like “intrinsic randomness” or “opinion/lack
of knowledge randomness”.

• But there is no explanation of why algorithms work except via a model
of randomness.

In Lecture 4 we saw a context (prediction markets and strategies for fair
games) where one can make numerical predictions without needing a very
specific model but only assuming a structural property (martingale). This
lecture shows the same for the context of data compression, the structural
property being stationarity. A third such context is spatial networks (section
9.4 later), the structural property being scale-invariance.

116 CHAPTER 7. CODING AND ENTROPY

Further reading. This lecture’s topic grew from a 1948 Shannon paper
with the title “a mathematical theory of communication” and the broad
academic field subsequently acquired the name Information Theory. This
is an unfortunate name – the thought-provoking book Information: A Very
Short Introduction by Floridi gives one view of how this field fits into the
much bigger picture of what “information” really is. The Wikipedia arti-
cle Information Theory outlines the scope of this academic field, and the
Cover - Thomas textbook Elements of information theory is a standard first
mathematical treatment.

