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1 IntroductionConsider the following problem, which actually arose in real life (we have masked theproblem somewhat to protect con�dentiality). Bob comes to Ron, a manager at hiscompany, with a complaint about a sensitive matter; he asks Ron to keep his identitycon�dential. A few months later, Moshe (another manager) tells Ron that someone hascomplained to him, also with a con�dentiality request, about the same matter.Ron and Moshe would like to determine whether the same person has complainedto each of them, but, if there are two complainers, Ron and Moshe want to give noinformation to each other about their identities.The protocol typically used in a situation like this one is akin to the game \twentyquestions," but goes by the name of \delicate conversational probing." Ron might askMoshe if Moshe's complainer is male, and if the answer is \yes" Moshe might then askRon if Ron's complainer's surname begins with a letter preceding \M" in the alphabet.This goes on until Ron and Moshe have ascertained whether they have the same personin mind. When they do not, however (particularly when the �rst \no" occurs late in thegame) a great deal of information may have been exchanged.Before suggesting some superior protocols, let us point out that there are myriad otherreasons why two or more parties might wish to \compare information without leaking it."Obviously, whenever two persons suspect that they have the same person in mind tonominate for some post, or invite for dinner, or blame for a disaster, etc., but neither iswilling to risk embarrassment by revealing the name, we have a situation much like theone with Ron and Moshe.Similarly, two persons may each wish to determine whether the other is a co-memberof a certain secret society. The test of membership, however, is knowledge of a password.The danger is that if A states the password, in order to convince B of his authenticity,and B is an impostor, then B may later be able to make illicit use of the password.The reader will no doubt be able to imagine some circumstances where comparinginformation without leaking it will enable two persons to engage in an illegal activitywithout fear of entrapment. However, the techniques we suggest later might also be usedby the forces of law. Suppose that the police suspect person A of masterminding a certaincrime and have captured underling B. They have o�ered B immunity for incriminatingA, but B is afraid to name A unless he can be assured that the police already suspectA. The police are hamstrung because if they suggest A's name to B, then B's statementwon't hold up in court. 2



Still other cases arise when two people wish to gossip without spreading rumors (eachwould like to determine if the other is in possession of the same information) or to overcomeshyness (perhaps there is a certain desirable course of action before them, which neitherwishes to be the �rst to suggest).In some situations the objective is to compare numerical values (that is, determinewhich is larger) rather than to test for equality. A typical case is Yao's \two millionaires"problem [20], in which the parties wish to determine who is richer without revealing theirnumerical worths. Similarly, a group of friends may wish to determine who among themis the oldest, or has had the most lovers, or has the \extreme value" of any potentiallyembarrassing parameter. We envision an adult game called \Are You Thinking WhatI'm Thinking?" in which both matching and comparison without leaking are employedto encourage people to reveal more about themselves.A more serious application occurs in business and in labor relations, where much timeis wasted when parties jockey to try to determine whether they have any common ground.Suppose party A is interested in acquiring a property belonging to party B, but would notconsider paying more than $x for it; B is willing to sell but is not interested in entertainingany o�er below $y. A and B would like very much to know which is the greater value,because if x � y, then they can begin bargaining in earnest, and if x < y, then they cango home. But neither can reveal his number without undermining his bargaining position.When more than two parties are involved, there are possible applications in a boardroom or even a jury room setting. For example, leaders often need to know what theiradvisors really think, in the absence of \fear of dissension." When a group is polledconcerning the advisability of some course of action, it might be desirable to set things upso that if a majority agree, the outcome will be the same as if there were unanimity. Thenno one need be afraid of distinguishing himself or herself as a renegade, and if a majorityof those present have doubts, discussion will ensue. (Perhaps the Iran-Contra scandalcould have been avoided!) Similarly, secret ballot elections are supposed to preserve thecon�dentiality of the voters, but in a small group the tally often tells all. Some of ourtechniques can be employed to hold elections in which only the name of the winner (orperhaps the names of candidates involved in a runo�) is revealed.Although we have now gone far a�eld fromRon and Moshe, there is an obvious solutionto all of the above problems.Solution 1: JOSEPHINEA trusted third party is found; all information is presented to him or her with the3



agreement that only the required results are revealed. In the case of Ron and Moshe, eachcould individually go to Josephine (the trusted third party), and tell her the name of thecomplainer. Josephine could then announce to Ron and Moshe whether the complainersare the same.How satisfactory this solution is depends on how easy it is to �nd a person to playJosephine's role, and on how much information Josephine must be trusted with. Bestwould be if Josephine had no idea why Ron and Moshe are whispering names to her,although even then, Ron and Moshe might feel that they are violating the complainers'trust.An exciting trend in cryptography in recent years is the study of protocols for secretfunction evaluation [13, 14, 17, 20, 21]. These protocols avoid the use of trusted thirdparties, and can be used to solve any of the above problems. Why don't Ron and Moshejust follow such a protocol?A technical problem with such protocols is that they rely on unproven assumptionsabout computational complexity, such as the existence of functions that are easy to com-pute but di�cult to invert by any feasible machine. In practice, a more serious problemis simply that they are complex schemes, which only certain experts can be expected tounderstand. Thus, blind trust is given to the system designer. An additional point is thatthese solutions are not yet genuinely practical even if implemented with the best possiblecare.Our goal in this paper is to provide some schemes whose implementation is so trans-parent that no expertise is needed to assure correctness. We hope that some of theseschemes will provide not only practical solutions to our problem, but also insight into thesubtleties of communication and information.As it happens, Ron and Moshe do happen to trust cryptographic protocols; theirmain problem is that they are lazy (\overworked" might be a kinder term). They don'twant to program up such a protocol. Indeed, they would like to avoid any programmingwhatsoever, if possible. Their goal is a \quick and dirty" solution, which can be expectedto work reasonably well.Perhaps the time has come to list the properties that we might wish an information-comparing protocol to have, emphasizing those on which we will concentrate in the presentwork. We will remain loyal to the Ron-and-Moshe story, for simplicity; but the readeris invited to try to extrapolate our schemes to cover multiple participants, comparingnumbers, etc. In what follows Ron's \value" is the name of the person who complained tohim (or whatever other piece of information is the subject of the protocol) and similarly4



for Moshe.A. \Resolution": Ron and Moshe should �nd out whether or not their values match.B. \Leakage": Assuming they follow the protocol faithfully, Ron and Moshe gain noknowledge about each other's value, except whether or not they are equal.C. \Privacy": No one else should gain any information about Ron and Moshe's values.D. \Security": Neither Ron nor Moshe should be able to pro�t by cheating. That is,by failing to the follow the protocol, neither should be able to determine the other'svalue without matching it, or to determine whether the values match while denyingthat information to the other.E. \Simplicity": The protocol should be easy both to implement and understand; thatis, Ron and Moshe should be required to expend only a small amount of time, energyand money to learn, use and be con�dent of the protocol.F. \Remoteness": Ron and Moshe need not be physically present at the same place inorder to execute the solution.Property B says intuitively that if the complainers are di�erent, then neither Ron norMoshe should have gained any information at the conclusion of the protocol as to whothe other complainer is, other than the fact that it is a di�erent complainer.A comment is in order about property D. One virtually unavoidable problem is lyingby simulation. Thus, we can do little about the possibility that, say, Ron tries deliberatelyto mislead Moshe by acting as if the person who complained to him was Alice, when itwas in fact Bob. Of course, then Ron will determine whether the person who complainedto Moshe is Alice, rather than determining whether the person who complained to Mosheis Bob. So in property D, we should really require that the cheater learns for exactly onevalue whether it is equal to the other party's input.Cryptographic protocols are very good at satisfying properties A through D and F,with the help of complexity-theoretic assumptions. However, our interest is in achievingproperty E as well. To do so, we are willing to sacri�ce some of the others when necessary;for example, Ron and Moshe trust each other, so property D is not so important. Con-dition C may be weakened to allow some information to pass to a third party; propertyB may be weakened by allowing small amounts of information to pass in the non-matchcase, or by allowing critical information to pass only in rare cases, or both. Dependingon the circumstances property F may or may not be signi�cant.5



After presenting our proposed solutions, we will return to properties A through F andexamine brie
y how they fared.2 SolutionsWe now present some solutions suggested by ourselves or our colleagues. Note that someof the proposals assume that there is a (small) known list of candidates for \complainer,"e.g. the department members; or that the name of the complainer is uniquely representableas an alphabetic string. Some of the proposals assume the existence of a trusted thirdparty (\Josephine") and others do not.Solution 2: COMPUTER PROGRAMTo avoid giving information to Josephine as in solution 1, we replace Josephine by acomputer. Ron and Moshe could obtain a computer program that works as follows:1. The program asks for input from Ron, who types, while Moshe is not looking, thename (Bob) of the person who complained to him.2. The program then clears the screen, and asks for input from Moshe, who types,while Ron is not looking, the name of the person who complained to him.3. The program clears the screen again, and announces whether the names that Ronand Moshe typed in were the same.4. The computer �nally erases all input information from its memory.Solution 3: SPECIAL-PURPOSE DEVICEReaders will note that, alas, third-party trust is still a factor in solution 2|namely,the computer programmer. In particular, how can Ron and Moshe be assured that theprogram will perform the last step, and not instead squirrel away the input for future use?Conceivably Ron and Moshe can take advantage of their professional expertise to actuallywrite the program and input it side-by-side, but this is too much trouble for them. Theymight be especially concerned with debugging, since they would like to feel con�dent thatthere is no subtle error in programming that could cause the program to abort, spewingthe data onto the screen, because, say, a name that was typed had more characters thananticipated or contained an unanticipated space.6



To get around this di�culty the third author has designed (and obtained a patent for)a special-purpose box, called the Electronic Trusted Party, which implements solution 2.It is a portable electronic device that accepts information from two or more persons,compares or combines it in a preselected fashion, destroys the input information, andthen displays the results. The critical feature of the Electronic Trusted Party is that itis incapable of storing information between uses or of revealing information other than asintended. It thus functions as a limited-access computing device, whose special featuresenable users to trust it with private information.For serious applications, the device can be certi�ed as genuine, by its manufacturer,in one of various ways; and it can be made tamper-proof, so that for example, openingthe battery case blanks the memory and opening anything else breaks a seal.The Electronic Trusted Party can be used for any of the applications described in theprevious section, by selecting an appropriate mode (e.g. \match," \rank," \vote"), andspecifying the number of participants and type of information desired. Like a computerprogram, it must to some extent be trusted; but the fact that it is a manufactured special-purpose device, without any means of accessing memory or any apparent way to misuseinformation, makes it much easier to trust in practice. The reader may imagine a plasticor metal box about the size of a hand calculator, but with alphanumeric keys and a specialhood/cover to facilitate private entry of data.Solution 4: RANDOM PERMUTATIONAnother modi�cation of solution 1 (JOSEPHINE) can be obtained by disguising theidentities of the possible complainers. Let us assume, for example, that there are twentypossible candidates. Ron and Moshe agree on a random labeling of these candidates bynumbers from 0 to 19; then each privately tells Josephine the number of the person whocomplained to him, and Josephine announces whether the two numbers received are thesame.Noga Alon of Tel Aviv University suggested that if the set of candidates is not clearor if the number of candidates is so large that it is not practical for Ron and Moshe togenerate a random labeling of the name space, the same e�ect can be obtained usinguniversal classes of hash functions, for example those of Carter and Wegman [5, 18]. Aconcrete example is as follows.Fix a method of assigning unique numbers to candidates, e.g. the candidate's nameinterpreted as a number base 27 (alphabetic characters plus space), and let p be a primenumber larger than the number assigned to any candidate. Ron and Moshe agree on7



two random numbers a and b mod p, where a 6� 0 mod p, without telling Josephine.If xR is the number corresponding to the person who complained to Ron, then Rontells Josephine the number axR + b mod p. Similarly, Moshe tells Josephine the numberaxM + b mod p, where xM is the number corresponding to the person who complainedto Moshe. The point is that if axR + b mod p and axM + b mod p are di�erent, thenthey are, as far as Josephine is concerned, simply a random pair uniformly chosen fromf(c1; c2) j 0 � c1 � p � 1; 0 � c2 � p � 1; and c1 6= c2g.Solution 5: RANDOM ROTATIONAn even simpler implementation of the idea of RANDOM PERMUTATION was sug-gested by Silvio Micali of MIT. Let us assume that there are twenty candidates, to whomRon and Moshe have openly assigned numbers from 0 to 19 (perhaps via alphabetical or-der). Josephine generates a random number k between 0 and 19, and tells it to Ron; Ronadds the number corresponding to his complainer to k, and passes the resulting numbermod 20 on to Moshe. For example, if Bob is assigned the number 10 in the ordering, thenRon tells Moshe the number k + 10 mod 20.Moshe takes this number, and subtracts from it the number corresponding to theperson who complained to him, and passes the result mod 20 to Josephine. Josephinethen announces whether the number she received from Moshe is the same as the numbershe passed to Ron. If it is, then Ron and Moshe know that it was the same person whocomplained to both of them, otherwise not.Note here that Josephine does obtain some information in this solution, namely thedi�erence between the numbers assigned to the two complainers.Solution 6: PERMUTATION COMPOSITIONOne of the shortcomings of RANDOM PERMUTATION and RANDOM ROTATIONis that Josephine does �nd out whether Ron and Moshe have obtained a match. Can eventhis information be denied the third party?We consider keeping the structure of the protocol. Thus, Ron and Moshe agree on somerandom string, send Josephine some function of their inputs, and Josephine announces aresult from which Ron and Moshe can deduce the answer. A simple but imperfect ap-proach (suggested by Bill Aiello of Bellcore) is for Ron and Moshe to repeat the procedureof solution 4 or 5 (say) 15 times, 14 of those being phony; for each phony procedure Ronand Moshe decide using a secret coin 
ip whether to provide Josephine with a match ornon-match. Not knowing which procedure is the real one, Josephine is (probably) keptmore or less in the dark as to the genuine outcome.8



To keep Josephine completely in the dark while maintaining the structure of the pro-tocol seems to require substantial e�ort, but it can be done. The following protocol isbased on work by Feige et al. [11] on secret computation and builds upon [13, 14]. UsingBarrington's Theorem [1], Ron and Moshe, working together, can associate with eachcandidate a pair of lists �1; : : : ; �m and �1; : : : ; �m such that1. Each �i and �i is a permutation of the set f1,2,3,4,5g;2. If �1; : : : ; �m corresponds to Ron's complainer and �1; : : : ; �m to Moshe's, then thecomposition �1�1 � � � �m�m yields the rotation � = (12345) when the complainersare the same, and the identity permutation otherwise.Now Ron and Moshe generate and agree upon an additional list �0; : : : ; �2m of ran-dom permutations of the set f1,2,3,4,5g, and they supply permutations alternately (andprivately) to Josephine as follows. Ron gives her �0�1��11 ; then Moshe gives her �1�1��12 ;then Ron gives her �2�2��13 , etc. Josephine composes these permutations and announcesthe result, which by construction is either �0���12m or �0��12m.Ron and Moshe can of course tell from the result whether their complainers were thesame, but Josephine has seen nothing but uniformly chosen random permutations. Itis interesting to note that this method is applicable to any function, not just equalitytesting. The catch is that for an arbitrary function, the number m may be very large.Solution 7: MESSAGE FOR MOSHEHenceforth we leave Josephine behind and try to make do without the voluntaryparticipation of a third party. Our next solution, which is actually a take-o� on an oldjoke, was suggested by Russell Impagliazzo of the University of California, San Diego.Ron and Moshe assign a random telephone number to each candidate. Ron dials thephone number corresponding to the person (Bob) who complained to him, and asks toleave a message for Moshe. Of course, the person who answers the phone has no ideawho Moshe is. A few minutes later, Moshe dials the phone number corresponding to theperson who complained to him and asks if anyone has tried to leave a message for him.Solution 8: AIRLINE RESERVATIONA rather neat practical version of MESSAGE FOR MOSHE takes advantage of thefact that airlines will not provide names of persons who have reserved 
ights. WhileMoshe is out of the room, Ron calls Delta Airlines and makes a reservation in the nameof his complainer for the Tuesday afternoon 
ight from Atlanta to Salt Lake City. Moshe9



then takes over and tries to cancel the reservation in his complainer's name. Finally Roncancels, or tries to cancel, the reservation he made.Solution 9: PASSWORDDick Lipton of Princeton University and Nick Pippenger of the University of BritishColumbia independently suggested a protocol that relies on the presence of a computerbut does not require any new programming. Ron changes his password to be the nameof the person who complained to him (thus, Ron changes his password to BOB). Moshethen tries to log on as Ron, where he uses as a password the name of the person whocomplained to him. Moshe succeeds precisely if the same person complained to Ron andMoshe. Note that the password-checking program is (typically) designed fortuitously forthe task at hand, and is heavily debugged for high security (so that, for example, whenthe password is typed in, it does not appear on the screen).It is interesting that Pippenger thought of this solution by considering hash functions.This is because many computer systems store not the password, but a hashed versionof the password, so that a system hacker cannot look at a table of stored passwords(instead, the hacker can see at best a hashed version of the password, from which itshould be di�cult to infer the password). In such a system, when someone types inhis password, the computer compares the hashed value of the password typed in with thestored hashed value of the actual password. Thus, in such a system, the Lipton-Pippengersolution is a pre-programmed version of both COMPUTER PROGRAM and RANDOMPERMUTATION.The following clever variation of PASSWORD, suggested by Alain Plagne of �EcoleNormale Sup�erieure in Paris, removes any possible temptation on Moshe's part to surrep-titiously try more than one password against Ron's. Ron issues the \passwd" command,which asks for the old password and then the new one, for which Ron enters his com-plainer's name as before. Then Moshe takes over when the \passwd" program demandscon�rmation of the new password. Afterwards Ron checks whether or not his old passwordis still valid.Solution 10: CUPSMiki Ajtai of the IBM Almaden Research Center suggested a physical solution to ourproblem. We need to assume that there is a fairly small pool of candidates, say twenty.Ron and Moshe obtain twenty identical containers (perhaps by purchasing disposablecups), arrange them in a line, and write labels in front of each cup, one for each candidate.10



Ron then puts a folded slip of paper saying \Yes" in the cup of the person who complainedto him, and a slip saying \No" in the other nineteen cups. Moshe does the same. Ronand Moshe then remove the labels, and shu�e the cups at random. They then look insidethe cups to see whether one of them contains two slips saying \Yes."Solution 11: DECK OF CARDSThe following scheme gives a practical method for handling large or unspeci�ed can-didate sets, although it has compensatory 
aws. It makes use of the coincidence that thenumber of playing cards in an ordinary deck is twice the number of letters in the Latinalphabet.The red and black cards of a deck of 52 playing cards are separated to form two decksof 26 cards; each deck is then shu�ed and placed face-down on the table. A 26-stepprocedure is now begun.At step i, Ron removes the top card from each deck and puts the two cards togetherface-to-face, not looking at their values, with the card from the red deck on top. He takesthe pair behind his back, and if the ith letter of the alphabet is in his secret name, heinverts the pair so that the black card is on top; otherwise he does nothing.Then Ron passes the pair of cards to Moshe; Moshe takes the cards behind his ownback, again inverting them just if the ith letter of the alphabet is in Moshe's secret name.The pair of cards is now placed on an accumulating \result stack" on the table.After 26 steps all the cards are in the result stack, which is then ri�e-shu�ed carefullyso that card colors do not show. Finally, cards are then dealt o� the top of the resultstack; a red card face up signals a mismatch of secret names.It is interesting to note that Cr�epeau and Kilian [9] have shown how Ron and Moshecan evaluate any function secretly using a deck with 4 kinds of cards. All they have tobe able to perform is a random cyclic shift of the cards. The number of cards required isproportional to the size of the circuit to evaluate the function.Solution 12: ENVELOPESWe now give a physical solution which avoids leaking information (even if the namespace is large) and requires no trust. This scheme is somewhat technical and may beskipped by the casual reader.Suppose for ease in description that the name space is f0; 1gn, i.e. assume that thename of the person who complained to Ron is (encoded as) the sequence x = x1x2 : : : xn ofn bits, and the name of the person who complained to Moshe is the sequence y = y1y2 : : : yn11



of n bits. As in many cryptographic protocols, our solution allows a small probabilityof error (here, the error represents the probability that Ron and Moshe believe, at theconclusion of the protocol, that their candidates are the same, when they are actuallydi�erent). Let k be a positive integer large enough so that probability of error of 2�k issu�ciently small to be acceptable.Ron and Moshe each select 2n random numbers, chosen independently between 0 and2k � 1. They each prepare a set of 2n identical envelopes, put one of their 2n randomnumbers in each envelope, and seal the envelopes. Ron and Moshe each arrange their 2nenvelopes in pairs so that each pair corresponds to one of the n bit positions. For each ofhis pairs, Ron assigns one envelope to correspond to the bit 0 and the other to the bit 1,and similarly for Moshe. We could imagine that Ron's envelopes (and similarly, Moshe's)are arranged on the table in a 2 � n rectangle, where the ith column corresponds to bitposition i, with the top envelope in the ith column representing the bit 0.Denote Ron's pairs by (R01; R11); (R02; R12); : : : (R0n; R1n) and denote Moshe's pairs by(M01 ;M11 ); (M02 ;M12 ); : : : (M0n;M1n). Ron computes TR = Pni=1Rxii mod 2k, which is thesum of the random numbers that correspond to the bit values of his candidate. Similarly,Moshe computes TM = Pni=1Myii mod 2k.Now Ron leaves the room. Moshe selects n envelopes from Ron's collection, by choos-ing from the ith pair the one corresponding to the value of yi. The rest of the envelopesare put into a pile. Ron enters the room and veri�es that indeed Moshe has chosenonly n envelopes altogether. The unchosen envelopes are destroyed. Moshe opens theenvelopes that he has chosen and sums up their contents together with TM , i.e., com-putes SM = TM + Pni=1Ryii mod 2k = Pni=1(Myii + Ryii ) mod 2k. Ron and Moshe ex-change roles, do the same procedure with Moshe's envelopes, and Ron computes SR =TR+Pni=1Mxii mod 2k =Pni=1(Rxii +Mxii ) mod 2k. (Note: bitwise \exclusive or" may beused instead of sum in the above calculations.)Ron and Moshe end the protocol as follows: Ron writes SR on a piece of paper, Moshewrites SM on a piece of paper, and they give each other their pieces of paper. If SR = SM ,then they conclude that x = y, and otherwise they conclude that x 6= y.It is not hard to verify the following:� If Ron and Moshe follow the rules, and if x = y, then SR = SM , so Ron and Mosheconclude that x = y. If x 6= y then SR 6= SM with probability 1 � 2�k, so withprobability 1 � 2�k, Ron and Moshe conclude that x 6= y.� If the n envelopes that Moshe chose did not come from exactly the positions de�ned12



by Ron's bits x1; x2; : : : xn, then from Moshe's viewpoint SR is simply a randomnumber selected uniformly from the integers between 0 and 2k � 1. Thus, Moshegains no information whatsoever from Ron's numberSR. A similar statement appliesfor Ron with respect to Moshe's number SM .A problem with the above scheme is that (say) Ron can learn whether x = y but notgive this information to Moshe. If Ron writes a random value on his paper, rather thanSR, then Moshe will (almost surely) conclude that x 6= y, whether this is correct or not,but Ron will know the true answer. We note that this problem can be corrected, but atthe price of losing e�ciency and simplicity (the correction involves a more complicatedscheme, which among other things executes the above protocol k times).Solution 13: DIGITAL ENVELOPESThe ENVELOPES solution can be implemented digitally (and thus converted intoa cryptographic protocol). We now brie
y describe how. It is based on a primitivecalled \one-out-of-two oblivious transfer" suggested by Even, Goldreich and Lempel [10],as a generalization of Rabin's \oblivious transfer" [15] (the notion was also developedindependently by Wiesner in the 1970's, but not published till [19]). This primitiveallows Ron to send two values R0; R1 to Moshe so that Moshe can choose to receive eitherR0 or R1. When Moshe chooses to receive Rj he gets no knowledge about R1�j . Rongets no knowledge about which Rj Moshe chose. Given such a primitive, it is not hard tosee how to implement this solution digitally: for each 1 � i � n Ron sends to Moshe thevalues R0i and R1i in a one-out-of-two oblivious transfer. Moshe chooses to receive Ryii .Similarly, Moshe does the same with the Mi's. At the end, Ron has SR and Moshe hasSM , which they can compare (again, however, incurring the problem discussed at the endof Solution 12).Following the execution of the protocol Ron will gain no additional knowledge as toMoshe's value, and vice versa.In order to implement oblivious transfer, one must assume that Ron and Moshe havecomputational power corresponding only to probabilistic polynomial time. (That is, thecomputers that they have at their disposal can be simulated by a Turing machine with asource of random bits, such that the running time of the Turing machine is bounded bysome polynomial in the input length.) Furthermore, given the current state of computa-tional complexity theory, one must also make a \complexity theoretic" assumption. Forinstance, implementations of one-out-of-two oblivious transfer exist, under the assump-tion that factoring a random number of the form N = PQ, where P and Q are primes, is13



hard. (See, e.g., Brassard, Cr�epeau and Robert [4] for details of implementing oblivioustransfer under such an assumption.)3 AnalysisMost of the 
aws in our solutions, relative to our six desired properties, will alreadyhave been spotted by the reader. We take a brief excursion through the properties withcomments.Property A: \Resolution"All of the solutions work when there is a match, assuming no local aberrations (e.g. inMESSAGE FOR MOSHE the called party might untruthfully deny that a message wasleft for Moshe; and many of the solutions rely on agreement between Ron and Mosheconcerning the spelling of candidates' names). Three of the solutions are capable ofproducing a false positive; DECK OF CARDS falls victim to accidental anagrams, andENVELOPES and DIGITAL ENVELOPES admit a small probability of ruination bynumerical coincidence.Property B: \Leakage"Since we make no assumptions about computational power in any of the solutionsexcept DIGITAL ENVELOPES, we can make the strong but simple requirement thatwhat Ron or Moshe sees as a result of the protocol (part of whose outcome is typicallyrandom) is independent of the other's complainer, assuming the complainers are di�erent.This critical requirement is fully achieved in all the solutions except DECK OF CARDS,where there is a small possibility that no red card appears until the last few cards ofthe deck have been examined; then Ron and Moshe would be able to conclude that theircomplainers' names contain similar sets of letters.In the DIGITAL ENVELOPES solution we do assume a limitation on the compu-tational power of Ron and Moshe. In this case we must de�ne what we mean by thestatement \Ron and Moshe gain no knowledge about each other's value, except whetheror not they are equal," since Ron and Moshe each gain an encrypted version of the otherparty's value. This statement can be made rigorous, as we now sketch. We considerthe \ideal" solution, in terms of the information transferred to the other party, to beJOSEPHINE, where Josephine simply announces the result. Therefore what Ron (andsimilarly Moshe) will desire from a protocol is that Moshe's knowledge after executing14



the cryptographic protocol would not be greater than after executing JOSEPHINE. Theidea is that no machine operating in probabilistic polynomial time should be able todistinguish the results of the cryptographic protocol from the results of JOSEPHINE.The de�nition of the security of such protocols and the design of protocols meeting theserequirements have been the subject of intensive investigations in cryptography. A veryaccessible introduction to such \zero-knowledge" protocols is given in [12].Property C: \Privacy"Of the solutions involving a trusted Josephine, only PERMUTATION COMPOSI-TION gives nothing away to Josephine; RANDOM PERMUTATION reveals the reso-lution and RANDOM ROTATION also provides Josephine with information about thecomplainers when they are di�erent. In JOSEPHINE, all is revealed.Property D: \Security"The issue of cheating in our protocols is quite complex. The solutions involving atrusted Josephine all su�er from possible collusions between Ron or Moshe and Josephine;this is perhaps a more critical problem than privacy in such solutions. Particularly weak,when Ron or Moshe can be tempted by the devil, are MESSAGE FORMOSHE, AIRLINERESERVATION and PASSWORD; all three allow one of the parties surreptitiously totry several candidates. COMPUTER PROGRAM permits fake programs (PASSWORDdoes also) and SPECIAL-PURPOSE DEVICE can fall victim to a phony device.One particular method of cheating is for one of the participants to halt the protocolprematurely after learning what he needs to know (this is called the \walk-away problem").For example, in the �rst version of PASSWORD, Moshe could obtain the answer withoutsharing it with Ron. This of course exposes the deserter as a cheater, but at times theremay be excuses (such as \the line went down"). This problem does not have a completelysatisfactory solution, but it is possible to limit the advantage of the deserter (see e.g.[2, 8, 10, 16]).Property E: \Simplicity"Admittedly, some of our proposals have gotten out of hand; PERMUTATION COM-POSITION and perhaps ENVELOPES are too complex for realistic consideration. SPECIAL-PURPOSE DEVICE will of course not be practical until such a device is marketed. COM-PUTER PROGRAM and PASSWORD require computers, and the third-party solutionsrequire Josephine, who certainly needs to be cooperative if not trustworthy.Among the simplest solutions to execute, CUPS stands out when the list of candidatesis known and small. Otherwise AIRLINE RESERVATION and DECK OF CARDS are15



e�ective, the latter better when there is more time but less trust. We suspect, though,that readers of this article will often �nd that PASSWORD requires the least time andpreparation.Property F: \Remoteness"All the solutions using a trusted Josephine enjoy property F, that is, they do notrequire all parties to be present at the same location. AIRLINE RESERVATION andPASSWORD (except with Plagne's variation) can also be operated remotely. However,if we want a solution where Ron and Moshe are not tempted to gain more information,but where a physical solution is impossible, then we must use a cryptographic solution.In fact, if all that Ron and Moshe do is exchange messages between them, then Chor andKushilevitz [7] show that cryptography is necessary, and Kilian [14] shows that the useof oblivious transfer is necessary. The DIGITAL ENVELOPES solution seems to be onethat can be implemented with least cost (in programming e�ort and execution time).4 Conclusions and End of StoryWhich of these wonderful solutions did Ron and Moshe actually implement? The answeris: none of them! We now describe the solution they used.Solution 14: REAL LIFEThe �rst author brought up the problem at dinner to his family. He explained thatBob had complained to him, and that he was trying to decide if Bob is the person whocomplained to Moshe. His then thirteen-year-old son Josh Fagin said, \Why not just askBob whether he complained to Moshe?" Because of its simplicity this was in fact thesolution that Ron and Moshe actually implemented. Of course, this solution depends onthe fact that the value that Ron and Moshe are trying to compare is actually the nameof a person whom they can communicate with, rather than simply a number. It alsodepends on the fact that Ron knew that Bob wouldn't mind being asked (in fact, Bobwas quite amused, and probably pleased at the lengths Ron went to in order to protecthis con�dentiality). As a humorous twist, which shows how even the best solutions cango astray in the real world, it turned out that Bob did not remember whether he hadcomplained to Moshe! Upon further re
ection, Bob decided that he probably had, andBob and Ron agreed dynamically on a modi�cation of the protocol: Bob asked Moshe if16



he (Bob) had complained to Moshe. It turned out that Bob was indeed the person whohad complained to Moshe.AcknowledgmentsThe Ron and Moshe of our story are the �rst author and Moshe Vardi, who togetherexperienced a similar problem at IBM. A couple of years earlier the third author hadbeen moved to consider the problem by an incident at Emory University, in which he anda colleague failed to discover that they had heard the same piece of juicy gossip.All the authors found that the cryptographic solutions in the literature were not nec-essarily the best for the situation at hand. Suggestions for solutions were solicited fromcolleagues, primarily at the IBMAlmaden Research Center and at the 22nd ACM Sympo-sium on Theory of Computing held at St. Louis in May of 1990. Those who shared theirthoughts with us but were not mentioned earlier include Richard Cleve, Tom�as Feder,Steven Rudich, David Shmoys and Moti Yung. We thank Cynthia Dwork, Joseph(ine)Halpern and Moshe Vardi for comments on a draft of this paper.Finally, we wish to thank Moshe Vardi for insisting on the simplicity of the solutions,thus forcing us to search further.References[1] D.A. Barrington, Bounded-width polynomial-sized branching programs recognize ex-actly those languages in NC1, J. Computer Syst. Sci. 38, 1988, pp. 150{164.[2] M. Ben-Or, O. Goldreich, S. Micali and R. Rivest, A fair protocol for contract signing,IEEE Trans. on Information Theory 36, 1990, pp. 40-46.[3] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation, Proc. 20th ACM Symp. on The-ory of Computing, 1988, pp. 1{10.[4] G. Brassard, C. Cr�epeau and J.-M. Robert, All-or-Nothing Disclosure of Secrets, Ad-vances in Cryptology - Crypto'86, Lecture Notes in Computer Science, No. 263, SpringerVerlag, 1987, pp. 234{238. 17
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