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Abstract

The streaky hitting patterns of all regular baseball players during the 2005 season are ex-
plored. Patterns of hits/outs, home runs and strikeouts are considered using different measures of
streakiness. An adjustment method is proposed that helps in understanding the size of a streak-
iness measure given the player’s ability and number of hitting opportunities. An exchangeable
model is used to estimate the hitting abilities of all players and this model is used to understand
the pattern of streakiness of all players in the 2005 season. This exchangeable model that assumes
that all players are consistent with constant probabilities of success appears to explain much of the
observed streaky behavior. But there are some players that appear to exhibit more streakiness than
one would predict from the model.
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1 Introduction

Consider the batting logs for all players in the 2005 baseball season. We
focus on the “regular” players who had at least 300 plate appearances during
this season; this will exclude pitchers and part-time players who may have
different batting tendencies from the regular players. By using different def-
initions of “batting success”, we will focus on sequences of three types of
hitting data.

• Hitting data. Here we focus only a player’s official at-bats (excluding
walks, hit by pitches, and sacrifice flies), and define a “success”, coded
by 1, if the player gets a hit, and 0 otherwise.

• Strikeout data. Again we consider only official at-bats and a player is
“successful” (coded by 1), if he strikes out; if he doesn’t strike out, the
at-bat is coded as 0.

• Home run data. Consider only the at-bats where the batter puts the
ball in-play; these will be the at-bats that are not strikeouts. Then a
batter is successful (coded by 1) if he hits a home run, and 0 otherwise.

For a particular form of hitting data, one will obtain binary sequences of
0’s and 1’s for all regular players in a season. If one scans these data, one
will find interesting patterns that suggest that particular players are streaky.
One may find

• periods during the season where a player is very successful

• periods during the season where a player has limited success

• streaks or runs of batting success or no batting success for particular
players

There is no doubt that these streaky patterns exist in baseball hitting data
and there is much discussion in the media about these streaky patterns. The
interesting question, from a statistical perspective, is: What do these streaky
hitting patterns say about the streaky abilities of these players?

To discuss streaky ability, consider a simple probability model for the
hitting for a single player. Suppose, for each at-bat, a hitter is successful
with probability p, this probability remains the same value for all at-bats
during the season, and outcomes for different at-bats are independent. We
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will call this the consistent p model – this coin-tossing model represents the
hitting for a player who is “truly consistent” during the season. A player with
“streaky ability” deviates from the consistent p model. It is possible that the
player’s hitting probability p can vary across the season. Alternatively, the
individual outcomes may be dependent and the probability of a hit in an at-
bat may depend on the player’s success or lack-of-success in previous at-bats.

2 Previous Work

There has been much interest in the detection of streaky ability since Gilovich
et al (1985) and Tversky and Gilovich (1989) who claimed that any observed
streakiness in sports data is simply people’s misperception of the streaky
patterns inherent in random data. For discussions on the statistical detection
of streakiness, see Berry (1991), Larkey et al (1989), and Stern (1997). Alan
Reifman has a web site (http://thehothand.blogspot.com/) devoted to hot-
hand research. Bar-Eli et al (2006) give a survey of twenty years of hot-hand
research.

Albright (1993) did an extensive analysis of streakiness of hitting data
for many major league baseball players. By incorporating “streakiness” pa-
rameters in a regression model, he determined that these parameters were
statistically significant for particular players. However, he failed to find con-
vincing evidence for a general pattern of streakiness across players. Albert
(1993), in his discussion of Albright’s paper, introduced a streaky model for
hitting performance. He assumed that a baseball hitter had two possible
ability states, low and high, with corresponding hitting probabilities pLOW

and pHIGH . A player would move between the two ability states according
to a Markov Chain with a given transition matrix. One could then measure
streaky ability for a given player by estimating the difference in hot and cold
hitting probabilities pHIGH − pLOW . Once a streaky model has been defined,
then one can investigate the power of different statistics, such as the longest
streak of wins, in detecting values of parameters of the streaky model. Al-
bert and Pepple (2001), using a Bayesian viewpoint, showed that a number of
streaky statistics such as the longest streak and the total number of streaks
were not very powerful in detecting true streakiness. Wardrop (1999) reaches
similar conclusions from a frequentist perspective.

Albert (2004) looked at the streaky patterns of wins and losses for Major
League baseball teams. He focused on Oakland’s 20-game winning streak in
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the 2002 season; by using a random effects model to model team competi-
tion, he concluded that one should expect to see streaks of similar lengths
every 25 years of baseball. There appears to be more evidence for streaky
ability at the individual sports level. Dorsey-Palmateer and Smith (2004)
demonstrate that bowlers’ patterns of strikes are not explainable by simple
chance models, and Klaassen and Magnus (2001) demonstrate differences
from the “independent and identically distributed” assumption for tennis
point-by-point data.

3 Multiplicity

One general problem in the search for streaky ability is the issue of multi-
plicity. Since there are many peoples and batting opportunities for a single
season, there are many opportunities for streaky behavior, and by focusing
only on players who appear streaky, there is a selection bias.

To illustrate this multiplicity problem, consider the following simulation
model for hit/out data (this model will be developed in a later section).
Suppose we have 284 players where each player has a constant probability
of success. (That is, each player is a consistent p hitter.) But the success
probabilities among players vary – they come from a beta probability distri-
bution with mean 0.274 and standard deviation 0.013. Suppose we simulate
probabilities of success for the 284 players from this beta model, and then
simulate independent sequences of successes and failures (much like flipping
coins with varying probabilities of heads) for the 284 players using their ac-
tual 2005 number of at-bats. When we did this simulation once, we observed
one player who had a hitless streak of 38 at-bats. We observed another player
who got hits in nine consecutive at-bats. We also observe some players with
some interesting short-term streaky behavior. To illustrate, Figure 1 plots
the batting average of one player using a moving window of 30 at-bats over
time. We see that during one 30 at-bat sequence during the season, the
player had a batting average exceeding .500, and during another 30 at-bat
period, his average was smaller than .100. Is this observed streaky behavior
meaningful? No, this data were simulated assuming that each player was a
consistent p hitter. We are observing this behavior since there we have data
for many players and the extreme players in this group appear streaky due
to multiplicity.
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Figure 1: Moving average graph for hitting data for one “extreme” player
simulated from a consistent p model.

4

Journal of Quantitative Analysis in Sports, Vol. 4 [2008], Iss. 1, Art. 3

http://www.bepress.com/jqas/vol4/iss1/3



4 Plan of the Paper

The intent of this paper is to investigate the streaky hitting patterns dis-
played by all regular players during a single baseball season. Specifically, we
would like to address if a consistent-p model is suitable for describing the
streaky behavior of this group of players. If it is not suitable, then are there
general patterns of streakiness? Are there outliers, or players who display
streakiness that is not consistent with the model?

We begin our study in Section 5 by considering the binary sequence of suc-
cess/failure outcomes for a single player and describing a number of different
statistics that can be used to measure patterns of streaky performance. Five
of these streaky statistics are computed for all regular players in the 2005
season and Section 6 gives a description of these “streaky distributions.” It
can be difficult to understand the size of a particular streaky statistic, say
the length of the longest run of successes, since it is confounded with the
player’s hitting ability and the number of hitting opportunities. Section 7
provides a simple adjustment procedure that looks at an individual’s player’s
streaky statistic in the context of a hypothetical collection of players with
the same ability and the same number of at-bats. We measure the extreme-
ness of a player’s streaky statistic by means of a p-value or the probability
that the statistic from this hypothetical collection is at least as extreme as
the player’s statistic. By graphing these p-values for all players, we learn
about the suitability of the consistent-p model across players. In Section
8, we improve this adjustment method by use of an exchangeable model to
simultaneously estimate the hitting abilities of all players, and the posterior
predictive distribution is used in Section 9 to assess the suitability of the
model in predicting the observed streakiness among the players. In Section
10 we look at players that appear unusually streaky using our criteria, and
Section 11 summarizes the main findings.

5 Streaky Statistics

We begin with a binary sequence of hitting outcomes for a player during a
season. As an example, consider the batting performance of Carlos Guillen
who appeared to be streaky in the 2005 season. Following is Guillen’s se-
quence of batting outcomes for all at-bats for the 2005 season, where 1 and
0 correspond to a hit and out, respectively.
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0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0

1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0

0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1

0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0

0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0

0 0 0 1 0 1 1 0 0 0 1 0 0 0 1

There are many ways of measuring patterns of streakiness in this binary
sequence. One general way of detecting streakiness, described by Albright
(1993) and Albert and Pepple (2001), is by the patterns of runs or consecutive
streaks of the same outcome. If we look at the pattern of hits (1’s) and outs
(0’s) in Guillen’s first group of at-bats

0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0

we see that he began with a run of one out, a run of one hit, a run of one
out, a run of two hits, a run of three outs, and so on. One can measure
streakiness in a player’s sequence for an entire season by using different run
statistics:

• the length of the longest run of successes

• the length of the longest run of failures

• the mean length of the lengths of runs of success

• the mean length of the lengths of runs of failures

• the total number of runs in a sequence

For Guillen’s data, we compute

• the length of the longest run of outs is 19

• the length of the longest run of hits is 4
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• the average length of runs of outs is 3.24

• the average length of runs of hits is 1.53

• the total number of runs is 140.

A player who is streaky may exhibit an unusually long run of successes or
a long run of failures. He may tend to have long runs of failures and so
the mean length of failure runs would be large. Also if the player tends to
have long runs of successes or failures, then the total number of runs in the
sequence would be small.

A second way to quantify streakiness in a binary sequence is based on
moving averages. Suppose one chooses a span of w at-bats and computes the
set of moving averages {mj, j = 1, ..., n−w + 1} where mj is the proportion
of hits in the at-bats from j to j + w − 1:

mj =

∑j+w−1
i=j yi

w
.

By plotting the moving averages {mj} across time, one sees the volatility of
the player’s success rates in short time intervals. (This approach is described
in Albert and Pepple (2001) and Chapter 5 of Albert and Bennett (2003).)
Figure 2 shows the moving averages of Guillen’s hit/out sequence using a
window of 30 at-bats, corresponding to about a week of games. The hori-
zontal line in the figure corresponds to Guillen’s .320 batting average for the
entire season. Looking at this figure, we see that Guillen had a mild hitting
slump followed by a long hot hitting period that peaked at 100 at-bats, and
two hot and two cold spells towards the end of the season. One can measure
streakiness in a moving average plot by

• the range of the moving averages R = maxj mj − minj mj

• the mean variation of the moving averages about the season average

B =
1

n − w + 1

n−w+1∑

j=1

|mj − ȳ|, where ȳ =
1

n

n∑

i=1

yi.

Streaky players will tend to have large values of R and B. For Guillen’s data,
one can compute

• the range R = 0.567 − 0.067 = 0.5
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Table 1: Table of previous hitting outcome and present outcome for the 2005
Carlos Guillen.

Current At-bat
Previous At-bat Out Hit

Out 157 70
Hit 69 37

• the mean variation B = 0.0977

We will refer to B as the “black” statistic since it is proportional to the
shaded area in the moving average plot in Figure 2.

A third way to quantify streakiness in the sequence is to look the rela-
tionship of the hitter’s success with the success in the previous at-bats. (This
approach is described in the basketball context by Wardrop (1995).) Suppose
we divide the data into bins of length w and categorize the success in the
ith and (i + 1)th periods for all i. For example, if w = 1, we look at the
relationship between the present outcome with the preceding outcome. For
Carlos Guillen, we obtain Table 1.

Looking at the table, we see that there were 157+70 = 227 at-bats where
the previous outcome was an out; of these outcomes the proportion of hits in
the next at-bat was 70/227 = .308. In contrast, of the 69 + 37 = 106 at-bats
where he had a hit, the proportion of hits in the next at-bat was 37/106 =
.349. In this case, there is some evidence that Guillen performs better after
a success than after a failure.

Instead of looking at periods of one at-bat, we can divide Guillen’s 334
at-bats into 167 periods of two at-bats, and categorize the number of hits
in the ith period with the (i + 1)th period, obtaining Table 2. Looking at
this table, one can compute the mean number of hits after 0, 1, and 2 hits
in the previous period, as displayed in Table 3. From Table 2, we see that
the mean number of hits is essentially the same after 0 and 1 hits in the
previous at-bats. The number of hits after 2 hits is increased, but it is not
significantly larger due to the small sample size.

From these two-way tables, one can measure dependence of the previous
success and the current success by the Pearson chi-square statistic and the
corresponding p-value of the test of independence. Large chi-square statistics
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Figure 2: Moving average graph for Carlos Guillen.
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Table 2: Table of hits in previous period and current period of two at-bats
for the 2005 Carlos Guillen.

# hits in
current period

# hits in
previous period 0 1 2

0 39 32 7
1 33 30 7
2 6 8 4

Table 3: Mean number of hits in the current period after 0, 1, 2 hits in the
previous period for the 2005 Carlos Guillen.

# hits in Mean # hits in
previous period current period

0 0.59
1 0.63
2 0.89
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or small p-values suggests some relationship between a player’s performance
in the previous and current periods.

A fourth way of measuring streakiness is based on a more formal testing
procedure based on the introduction of alternative streaky models. To define
these models, suppose we first group the player’s hitting data into bins of
a given size – here we use bins of 20 at-bats, corresponding to a period of
4 games. We then have the grouped hitting data x1, ..., xn, where xi is the
number of successes in the ith period. Suppose that xi is distributed binomial
with probability of success pi. The consistent p model, denoted by MC , states
that the player’s hitting success is a constant value p over the entire season.

MC : p1 = ... = pn = p.

To complete this model, we assume that the constant value p has the nonin-
formative uniform prior. The streaky model, denoted by MS , says that the
player’s hitting probabilities over the season {pi} vary according to a beta
density of the form

g(p) =
1

B(Kη, K(1 − η))
pKη−1(1 − p)K(1−η)−1, 0 < p < 1.

In this beta density, the parameter η is the mean and K is a precision param-
eter. We fix the parameter K to a particular value, and assign the parameter
η a uniform noninformative prior. As the precision K approaches infinity, the
streaky model MS approaches the consistent model MC . So the parameter
K can be viewed as a measure of streakiness where smaller values indicate
a higher level of streakiness. The streaky statistic is defined to the Bayes
factor in support of the streaky model MS over the consistent model MC.
This Bayes factor, denoted by BF , is given by

BF =
m(x|MS)

m(x|MC)
,

where m(x|M) is the predictive density of the data x given the model M .
(See Kass and Raftery (1995) for a general discussion of Bayes factors, and
Kass and Vaidyanathan (1992) and Raftery (1996) for illustrations of Bayes
factors for exponential family models. Albert (2007) uses this method for
detecting streakiness for Derek Jeter’s hitting data for the 2004 season.)

In this setting, we fix a value of the precision parameter K = 100 to
represent “true” streakiness or variation in the hitting probabilities, and use

11

Albert: Streaky Hitting in Baseball

Published by The Berkeley Electronic Press, 2008



the corresponding Bayes factor BF to measure streakiness in the data. A
large value of the Bayes factor indicates support for true streakiness. For
Carlos Guillen, we observe the hit counts and number of at-bats data

5/20 5/20 7/20 10/20 10/20 10/20 6/20 9/20

4/20 4/20 6/20 7/20 4/20 2/20 6/20 12/34

For Guillen, we compute BF = 1.32, indicating a modest level of support for
the streaky model MS . Instead of computing the Bayes factor, an alternative
method for getting a streaky statistic is to fit the streaky model MS with
unknown K to Guillen’s data and estimate the value of the precision param-
eter K. The estimate of log K by fitting the model MS is log K̂ = 3.30. This
estimate of K is a measure of the variation in hitting probabilities p1, ..., pn.

In this paper we focus on five measures of streakiness: (1) the mean
length of runs of failures, (2) the longest run of failures, (3) the longest
run of successes, (4) the black statistic B (using a window of 30 at-bats),
and (5) the log Bayes factor log BFusing bins of 20 at-bats. We include
the longest runs of successes and failures since these statistics receive much
attention in the media. The mean length of runs of failures may provide
more information than the longest run since it includes the lengths of all
runs of failures during the season. The black statistic B seems to be a
useful measure of the volatility of a player’s success rate over time. The two
Bayesian measures log BF and log K̂ are highly correlated, so we include only
one measure here. In our preliminary work, the measures of streakiness based
on the two-way contingency tables didn’t seem very powerful in detecting
streaky ability and so we exclude them here.

6 Streakiness in the 2005 Season

To gain an initial understanding about the streaky behavior of all regular
players for the 2005 season, we compute the five measures for the hit/out
data for all 287 players. Figure 3 presents histograms of the five statistics for
all regular players. In each figure, the value for Carlos Guillen is indicated by
a vertical line. Here are some general comments about the pattern of these
streaky statistics across players.

1. The average length of a run of outs tends to be about 3.7 at-bats.
There is one unusual streaky player who had an average run length
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Figure 3: Histograms of five streaky statistics of hit/out data for all 2005
regular players.
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of 5.3 and the most consistent player had an average run length of 3.
With regards to this statistic, Guillen was relatively consistent.

2. The longest run of outs has a relatively long right tail, suggesting
that there are some streaky players with respect to this statistic. One
player had a long hitless streak of 34 at-bats. Guillen’s longest hitless
streak of 19 is relatively high among the regular players.

3. The longest run of hits statistic is concentrated on the five values 3,
4, 5, 6, and 7, and values of 2 and 8 were unusual. Guillen’s longest
streak of 4 hits is right in the middle of this distribution.

4. The black statistic is pretty symmetric about the value 0.065. Guillen’s
value is in the far right tail of this distribution.

5. The log Bayes factor statistics {log BF} are symmetric about the
mean value of −0.13. Recall that values larger than zero indicate some
support for streakiness, and values smaller than zero indicate support
for consistency. The values range from −1.5 and 2.1 and Guillen’s value
of 0.28 indicates modest support for streakiness.

Table 4 presents a correlation matrix of these statistics. It is interesting
that the measures are not strongly correlated even though all statistics are
measures of streakiness. There is a strong correlation of 0.73 between the
black statistic and the log Bayes factor. There is a moderately strong cor-
relation (0.34) between the average run length of outs and the longest run
of outs. Also there are moderately strong relationships between the black
statistic and the lengths of the longest runs of outs and hits. There are some
negative correlations. Players who have long streaks of hits tend to have
small average run lengths of outs.

7 Adjustment

The histograms presented in Figure 3 are a first step in understanding the
streaky patterns across players. For example, if a player gets five consecutive
hits, we can say that this is not surprising since many players accomplished
this feat during a season. But there are two confounding variables that make
it difficult to interpret the size of these statistics. First, the observed streaky
statistic value is dependent on the hitting ability of a player. For example,

14

Journal of Quantitative Analysis in Sports, Vol. 4 [2008], Iss. 1, Art. 3

http://www.bepress.com/jqas/vol4/iss1/3



Table 4: Correlation matrix of five streakiness statistics

mean outs long out long hit black log Bayes factor
mean outs 1.00 0.34 −0.17 −0.04 0.14
long out 0.34 1.00 −0.18 0.25 0.31
long hit −0.17 −0.08 1.00 0.24 0.17
black −0.04 0.25 0.24 1.00 0.73
log Bayes factor 0.14 0.31 0.17 0.73 1.00

if one considers the longest run of outs, this statistic will tend to be larger
for a weak batter with a small batting average. Second, the value of these
statistics is dependent on the number of opportunities. A lead-off hitter
with many at-bats during a season will have a better chance of having a long
hitting streak or a long slump of failures.

To understand the size of a particular statistic for a player, sobs, it is im-
portant to adjust this statistic for the player’s hitting ability and his number
of at-bats. We can perform this adjustment by considering the value sobs

among a hypothetical population of consistent hitters who have the same
ability (as measured by the player’s proportion of successes) and the same
number of at-bats. A simulation adjustment method proceeds as follows.

1. Estimate the success probability p for the player by the proportion of
successes p̂.

2. Given the values of n and p̂, simulate m sequences of binary data of
length n, where the probability of successes is equal to p̂.

3. For each sequence, compute the value of the streaky statistic, obtaining
a collection of statistics {sj}.

4. Compute the empirical p-value

P =
1

m

m∑

j=1

I(sj ≥ sobs),

where I(A) is the indicator function that is equal to one if A is true
and equal to 0 otherwise. This simulation process is equivalent to the
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use of the nonparametric bootstrap procedure to estimate a sampling
distribution as described in Efron and Tibshirani (1994).

The p-value P measures the extremeness of the player’s streaky statistic in
the context of all “consistent p” players having the same number of at-bats
and same probability of success p. A p-value close to zero would suggest
that this player is unusually streaky and a p-value close to one suggests that
this player exhibits consistency beyond what would be predicted using the
consistent p model.

We demonstrate these p-value calculations for Carlos Guillen. In the 2005
season, Guillen had 107 at-bats in 334 at-bats for a season batting average
of 107/334 = .320. Suppose we have a large group of hitters, each with a
hitting probability of p = .320, and each has a season of n = 334 at-bats.
We simulate a sequence of binary hit/out data for each player and compute
the value of the streaky statistic. We collect the streaky statistics for 1000
players of this type.

Figure 4 illustrates these calculations. The first histogram in the top left
portion of the figure shows the average run of outs for our 1000 hypothetical
players who came to bat 334 times with a hitting probability of p = .320.
Note that this histogram is different in location and shape from the histogram
of the average run of outs of all 2005 players. The average run of outs tends
to be smaller for our 1000 players since they came to bat only 334 times,
in contrast to many of the regular players who had 500-700 at-bats. The
vertical lines in the figure correspond to the values of the streaky statistic
for Guillen. In 2005, Guillen’s average runs of outs was 3.24. The p-value is
the proportion of simulated players who had an average run of outs at least
as large as 3.24. The p-value is computed to be 0.316 which is not sufficient
evidence that Guillen was different from these consistent hitters. This same
type of calculation was performed for each of the remaining four statistics.
Note that Guillen was a bit unusual with respect to his long run of 19 outs
and his black statistic value of 0.0977 – the corresponding p-values are 0.064
and 0.009, respectively. It is important to emphasize that these p-values
cannot be computed from the histograms of all 2005 regulars (Figure 3),
since the values of these streaky statistics are confounded with the number
of attempts (at-bats) and the different probabilities of success.

These empirical p-values were computed for all regular players in the
2005 season using all five of our streaky statistics. Histograms of p-values
for the statistics are presented in Figure 5. If the data were generated from
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Figure 4: Illustration of p-value calculations for Ozzie Guillen for hit/out
data.
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consistent models with known probabilities, then one would see a uniform
pattern in these p-values. This means, that one would observe that, say
10%, of the p-values would be smaller than .1, since this is the percentage
that would be predicted from a uniform curve. However, our p-values are
computed using estimated values for the probabilities and the patterns of
these p-values show some interesting non-uniform shapes. (See Bayarri and
Berger (2000) and Robins et al (2000) for discussion on the distribution of
p-values for composite hypotheses.) Let’s comment about each histogram in
turn.

1. The p-values of the average lengths of the runs of outs have a
bell-shaped appearance. This means that the players’ average runs of
outs tended to cluster more towards the mean assuming consistent p
models and there were few players that exhibited streakiness using this
measure. The average length of runs of outs does not appear to be a
very helpful statistic for detecting streakiness since few players were
extreme with respect to this measure.

2. In contrast, the p-values of the longest run of outs is more uniform
in appearance. There is a cluster of values close to zero suggesting that
there are more streaky players that expected using this statistic.

3. The p-values for the longest run of hits has a spike close to one.
This is likely a consequence of the discreteness of this particular test
statistic. For many players, the observed longest run of hits was a
likely value and the probability of this value would inflate the p-value.
We saw this phenomenon in the calculation of the p-value for Carlos
Guillen in Figure 4.

4. The histogram of the p-values for the black and Bayes factor statis-
tics resemble the histogram for the longest run of outs statistic. In both
cases we see uniform shapes with a cluster of p-values close to zero.

It is difficult to judge the suitability of the consistent p models due to
the nonuniform shapes of the p-values. It is hard to say if the nonuniform
shape is due to some “true” streakiness or due to the inherent nature of these
p-values using estimated probability values. In Section 9, we will compare
the distributions of p-values with simulated distributions using “improved”
estimates of the success probabilities.
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Figure 5: Histograms of p-values for five streaky statistics of hit/out for all
2005 regular players.
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8 An Exchangeable Hitting Model

The previous section illustrated the idea of adjusting a player’s streaky statis-
tic for his hitting ability and the number of opportunities. But this adjust-
ment procedure can be improved in several ways. We made the assumption
that a player’s hitting ability p can be estimated by his observed hitting
rate during a season. However, since we have the hitting data for all regular
players during a season, we can use an exchangeable model, similar to that
used to measure streakiness, to better simultaneously estimate the abilities
of all players. Efron and Morris (1975) was the first paper on the use of
exchangeable modeling to estimate hitting probabilities and Everson (2007)
gives a recent survey on the related topic of Stein estimation. Albert (2004,
2006) demonstrates the use of this model in learning about the abilities of
baseball hitters and pitchers.

We are given hitting data for N players in a season, where the ith player
has yi successes in ni attempts. If success is a hit then we observe the
number of hits yi in ni at-bats, if success is a strikeout, then we observe the
number of strikeouts yi in ni at-bats, and if success is a home run, then we
observe the number of home runs yi in ni balls in play. We first assume the
yi’s are independent, where yi is binomial (ni, pi). We assume the hitting
probabilities p1, ..., pN are distributed according to the beta density

g(p) =
1

B(Lη, L(1 − η))
pLη−1(1 − p)L(1−η)−1, 0 < p < 1.

We complete the model by assigning (η, L) the noninformative prior

g(η, L) =
1

η(1 − η)

1

(1 + L)2
, 0 < η < 1, L > 0.

In this model, the parameter η is the mean of the random effects distribution
of the success probabilities p1, ..., pN . The precision parameter L measures
the spread of this random effects distribution.

Given the hitting data (yi, ni), i = 1, ..., N for each definition of success,
we fit this model and the estimates of the hyperparameters η and L are
displayed in Table 5. By use of this model, the Bayesian estimate at a
player’s hitting probability pj shrinks the observed rate yj/nj towards the
average rate for all players. The Bayesian estimate is approximately given
by

ni

ni + L̂

yj

nj

+
L̂

ni + L̂
η̂.
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For hit/out data, since L̂ is large, these estimates shrink the observed batting
averages strongly towards the overall batting average. The estimates of the
probabilities for striking out and hitting a home run make smaller adjust-
ments to the observed player strikeout rates and home run rates, respectively.
(Albert (2005) fits this model to different measures of hitting and shows that
some measures are more reflective of players’ abilities.)

Table 5: Estimates of parameters η and L using beta binomial model.

Data η̂ L̂
hitting 0.274 1121
strikeout 0.174 46.3
home run 0.0402 69.8

9 Checking the Exchangeable Model

By use of the exchangeable model, we obtained improved estimates at the
group of hitting probabilities. In this section, we see if the pattern of streaky
hitting during the 2005 season is consistent with this exchangeable model.
Specifically, we check if the observed values of these streaky statistics for the
2005 season are consistent with the predicted values of these statistics from
the model. Our method for checking the suitability of this model, based on
the posterior predictive distribution, is described as follows. (The use of the
posterior predictive distribution in Bayesian model checking is described by
Rubin (1984) and in Chapter 6 of Gelman et al (2003).)

1. We simulate a value of (η, K) from the posterior distribution.

2. Given this draw of (η, K), we simulate hitting probabilities p1, ..., pN

from independent beta distributions.

3. Given these hitting probabilities, we simulate binary sequences yi1, ..., yini

for all players, where {yij} are independent Bernoulli (pi). In this step,
the numbers of trials n1, ..., nN are the actual number of opportunities
for the 2005 players.
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4. Based on a binary sequence for the ith player, we compute a streaky
statistic Si.

For each simulation (representing a season of baseball), we obtain a collection
of streaky statistics S1, ..., SN.

In Section 7, we found it difficult to interpret the sizes of the streaky
statistics due to the nonuniform shapes of the p-value distributions. But the
use of the posterior prediction distribution does not have this disadvantage.
We are simply checking if the observed streaky data is consistent with sim-
ulated draws of future streaky data generated from the exchangeable model.
Also, the adjustment method of Section 7 implicitly assumed that the hitting
probabilities are equal to the estimated values. In contrast, the simulated
data from the posterior predictive method automatically adjusts for the un-
certainty in the location of the hitting probabilities.

Suppose we use the adjustment method of Section 7 for the statistics
S1, ..., SN simulated from the posterior predictive distribution of the ex-
changeable model. For each simulated player, we simulate independent se-
quences of Bernoulli data using the estimated probability of success, and
compute the p-value for the statistic Si. The reference distribution for a
set of p-values is the uniform distribution. Equivalently, if we transform the
p-value by the inverse normal transformation

T (p−value) = Φ−1(p−value),

then the reference distribution for the transformed p-values will be a standard
normal curve. Figure 6 plots density estimates of the transformed p-values
for ten sets of players simulated from the posterior predictive distribution.
The solid line in each figure represents a density estimate of the transformed
p-values for the actual 2005 data.

Recall from Section 7 we observed some non-uniform shapes of the distri-
bution of p-values. In particular, the p-values corresponding to the average
run of outs had a mound-shaped distribution and the p-values for the longest
run of hits had a peak near one. We see the same patterns in the shapes
of the transformed p-values of the simulated data in Figure 6. Most of the
probability for the average run of outs is concentrated about −1 and +1, in
contrast to the normal curve where the probability is concentrated between
−2 and 2. The distribution of transformed p-values corresponding to the
longest run of hits is shifted right compared to the standard normal. The
other three distributions of transformed p-values seem close to normal for
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the simulated data. The transformed p-values for the actual 2005 players
seems to resemble the simulated p-values for the consistent model for each
statistic. The conclusion is that the shapes of the p-values seen in Section
7 are a by-product of the bootstrap procedure rather than any indication of
streakiness in the data.

Using a different approach, suppose we focus on three measures for streaky
hitting, the longest run of outs, the black statistic, and the log Bayes factor,
and summarize each collection of statistics for all players by a mean S̄ and
a standard deviation sS. If we repeat the posterior prediction simulation
m times, we obtain a collection of means {S̄j} and a collection of standard
deviations {sSj} corresponding to the exchangeable model. For our 2005
data, we compute the mean streaky statistic S̄obs and the standard deviation
sobs across all regular players. To see if these observed values are consistent
with the simulated draws from the predictive distributions, we compute the
p-values

P1 =
1

m

m∑

j=1

I(S̄j ≥ S̄obs), P2 =
1

m

m∑

j=1

I(sSj ≥ s̄obs).

If either of these p-values is close to 0 or 1, then the pattern of streakiness
in the 2005 data is not consistent with the pattern of streakiness predicted
from the exchangeable model.

Tables 6, 7, and 8 present the values of the p-values using the three
streaky statistics for the hit/out, strikeout, and home run data, respectively.
From looking at these tables, we see

1. For the hit/out data, the p-values appear significant for the mean
of the black statistic, and close to significant for both the mean and
standard deviation of the log Bayes factor. (We are using “significant”
in a loose sense here; we are not adhering to a strict definition that a
p-value smaller than 0.05 is significant.)

2. For the strikeout data, both the mean and standard deviation appear
significant for both the black statistic and the log Bayes factor.

3. For the home run data, the standard deviation appears significant
for both the longest run of outs data and the log Bayes factor.

A significant (small) p-value for the mean indicates a general tendency of
the players to be streaky and a significant p-value for the standard deviation
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indicates that there is more variability in streakiness (perhaps, more streaki-
ness among some players) than predicted from the exchangeable model. For
the strikeout data, there appears to be the greatest evidence of streakiness
as measured by both the black and Bayes factor statistics. For the home
run data, there appears to be a small group of players that exhibit unusual
streakiness (since the standard deviations are unusually large). There is less
evidence of streakiness for the hit/out data, but there is evidence that players
tend to be streaky with respect to the black statistic.

Table 6: Posterior predictive p-values for hit/out data.

Statistic P1 P2

longest run of outs 0.211 0.317
black statistic 0.033 0.344
log Bayes factor 0.124 0.092

Table 7: Posterior predictive p-values for strikeout data.

Statistic P1 P2

longest run of outs 0.185 0.429
black statistic 0.086 0.057
log Bayes factor 0.008 0.040

Table 8: Posterior predictive p-values for home run data.

Statistic P1 P2

longest run of outs 0.304 0.045
black statistic 0.440 0.424
log Bayes factor 0.59 0.040

To confirm these p-value calculations, we focus on the strikeout data.
We simulated twenty datasets (each dataset the binary sequences for all
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regular players) from the posterior predictive distribution of the exchangeable
model and computed the log Bayes factors for each dataset. Each of the
distributions of the log Bayes statistic, representing the streaky statistics for
all players, was summarized by the 5th, 50th and 95th percentiles and the
light lines of Figure 6 show these distributions. The actual distribution of
log Bayes factors for the 2005 players is plotted as a solid line. Comparing
the 2005 data with the simulated data, the most visible difference is that
the distribution of 2005 values appears to have a longer right tail than the
simulated distributions. The interpretation is that there are some players
that are unusually streaky in their patterns of strikeouts.

10 Streaky Players

The work in the previous section demonstrated that there was some lack-
of-fit of the exchangeable model. Specifically, the distribution of streaky
statistics seems somewhat more spread out than predicted under the model.
So this motivates looking at players that appear unusually streaky. We rank
the players by use of the p-values in the adjustment procedure of Section
7. Recall that a small p-value corresponded to a player that has an unusual
streaky pattern. Since we have 284 regular places, one would expect there to
be 284 × .05 = 14 “streaky” players even if the consistent-p model was true.
Table 9 gives the number of streaky players for each of the three definitions
of hitting success and the three streaky statistics. Note that we observe more
than 14 streaky players only for the hit/out data and for the strikeout data
using the Bayes factor criterion. This indicates that we should only look at
a small number of the top streaky hitters.

Table 9: Number of streaky players, where “streaky” corresponds to a p-
value smaller than 0.05. Since there are 284 players, one would expect there
to be 284 × .05 = 14 significant players by chance.

Statistic Hit/out data Strikeout data Home run data
longest run of outs 24 14 11
black statistic 20 15 5
log Bayes factor 24 23 14
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Figure 6: Distribution of transformed p-values of five statistics simulated
from beta/binomial exchangeable model. The ten lines represent the trans-
formed p-values for ten simulations from the model and the solid line repre-
sents the transformed p-values for the 2005 regular players.
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for strikeout data assuming beta/binomial model. Each line shows the 5th,
50th, and 95th percentiles. The bold line is the distribution of log Bayes
factors for the 2005 regular players.
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Tables 10 and 11 give lists of the top ten streaky hitters for the three types
of hitting and the black statistic and the Bayes factor. A couple of obser-
vations can be made from this table. First, there is little overlap of players
across types of hitting. That means that a player who appears unusually
streaky in hits doesn’t generally appear streaky in strikeouts and home runs.
Also there is a small amount of overlap between the lists for the Bayes factor
and black statistics. So the definition of a streaky player depends on the
particular definition of streakiness that we use.

Table 10: Top ten streaky players with respect to hits/outs, strikeouts, and
home runs using Bayes factor statistic. The players are ranked with respect
to decreasing p-value in the adjustment procedure of Section 6.

Hit/Outs Strikeout Home run
Jorge Posada Eric Hinske Bobby Abreu
Chipper Jones Brian Roberts Clint Barmes
Mike Piazza J.J. Hardy Hee Choi
Eric Byrnes Todd Hollandsworth Gary Matthews
Neifi Perez Ruben Gotay Bernie Williams
Victor Martinez Shawn Green Rod Barajas
Jason Bay Shea Hillenbrand Edgardo Alfonzo
Todd Helton Luis Matos Joe Randa
Cesar Izturis Alex Rodriguez Chris Burke
Jeff Kent Rondell White Ichiro Suzuki

11 Final Comments

What insight have we gained about streaky hitting on this analysis? First,
it is difficult to judge the streaky ability of a single player on the basis of his
streaky performance during a single season. Since there are so many players
in baseball playing over many seasons, it is very possible to observe long
streaks or extreme short-term batting performances even if all players are
consistent-p hitters. This multiplicity problem is similar to the interesting
streaky behavior observed if many students simultaneously toss coins.
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Table 11: Top ten streaky players with respect to hits/outs, strikeouts, and
home runs using black statistic. The players are ranked with respect to
decreasing p-value in the adjustment procedure of Section 6.

Hit/Outs Strikeout Home run
Mike Sweeney Hee Choi Jose Guillen
Juan Uribe Brian Roberts Kevin Millar
Carlos Guillen Todd Hollandsworth Hank Blalock
Jeff Kent Jacque Jones Hee Choi
Chipper Jones Matt LeCroy Bobby Abreu
Cesar Izturis Julio Lugo Mark Bellhorn
Matt Lawton Justin Morneau Ichiro Suzuki
Felipe Lopez Jeff Conine Bret Boone
Victor Martinez Gary Matthews Bernie Williams
Eric Byrnes Rondell White Mark Teixeira

When we controlled the multiplicity problem by looking at the streaky
performances of all regular players, new problems were encountered. The size
of a streaky statistic, say the length of the longest run of successes, depends
on the player’s ability and his number of opportunities during a season. We
proposed a simple simulation adjustment method that controlled for ability
and number of opportunities. When we perform this adjustment method for
a player, we obtain a p-value that is the probability that a consistent-p hitter
with the same ability and opportunities would be as streaky as the observed
player. We improved this adjustment method by use of an exchangeable
model that provided better estimates of the players’ hitting abilities. We
saw that the bootstrap procedure for computing a p-value can lead to p-
values that are not uniformly distributed even when the consistent model is
true.

One interesting conclusion from this study is that the exchangeable model
assuming that all players are consistent-p hitters actually explains most of
the variation of streaky hitting that we observe in a single season. Does
this imply that all players are consistent-p hitters? Of course not. The
probability that a player succeeds in hitting should depend on many variables
such as the opposing pitcher, the ballpark, and the game situation. But this
exchangeable model that ignores these extra effects seems to be useful in
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understanding the patterns in streaky hitting in baseball. It is doubtful that
much more could be learned about streakiness through the addition of new
covariates.

Although the model explains most of the streaky hitting in baseball, some
model misfit is present. Among all regular players, there are more streaky
hitters than one would predict on the basis of this exchangeable model. On
the basis of this observation, we identified the players who were unusually
streaky in the patterns of getting hits, home runs, and strikeouts. But there is
little evidence on the basis of this study that particular players are generally
streaky – players that appeared streaky in the pattern of hits/outs did not
appear streaky in the pattern of strikeouts. This suggests that it may be
hard to find players that exhibit streaky behavior across seasons, although
this would be an interesting study for future work.
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