Continuous-time **Birth-and-death chains.**

These have states \{0, 1, 2, \ldots, N\} or \{0, 1, 2, \ldots\} and the only transitions are \(i \to i \pm 1 \). Write

\[
\lambda_i = q_{i,i+1} \quad \text{(birth rate)}; \quad \mu_i = q_{i,i-1} \quad \text{(death rate)}.
\]

For these chains we can solve the detailed balance equations:

\[
w_i = \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_j}; \quad w_0 = 1, \quad w = \sum_{i \geq 0} w_i.
\]

So the stationary distribution is

\[
\pi_i = \frac{w_i}{w}
\]

provided (in the infinite-state case) \(w < \infty \).
Example. Take $\lambda_i = \lambda$, $\mu_i = \mu$, $\lambda < \mu$. Then the stationary distribution π is the shifted Geometric ($p = 1 - \lambda/\mu$) distribution.

This is the M/M/1 queue model, as follows.

- Customers arrive at times of a rate-λ Poisson point process.
- Service times are IID Exponential(μ).
- $X(t) =$ number of customers at time t.
- 1 server.

We can calculate many quantities associated with the stationary process:

- Long-run proportion of time server is idle $= 1 - \lambda/\mu$.
- Mean number of customers $= \frac{\lambda}{\mu - \lambda}$.
- Mean waiting time (until starting service) for customer $= \frac{\lambda/\mu}{\mu - \lambda}$.
- Mean total time (until ending service) for customer $= \frac{1}{\mu - \lambda}$.
- Mean busy period for server $= \frac{1}{\mu - \lambda}$.
We implicitly assumed the rule for “order of service” is \textbf{first-in first-out} – \textbf{FIFO} but the results above do not depend on this rule. Changing the rule to “last-in first-out” would change other aspects such as “distribution of time in system”.

Many more complicated queue models have been studied – we will look at a few of them. First here is a

\textbf{General principle.} For a system in equilibrium (stationary distribution)

\[L = \lambda W, \quad \text{where} \]

\[\lambda = \text{arrival rate} = \mathbb{E} \text{ (number of arriving customers per unit time)}. \]
\[W = \text{average time in system per customer}. \]
\[L = \text{average number of customers in the system}. \]

[board]
The M/M/s queue model has \(s \) servers instead of 1 server. But with a single waiting line.

- Customers arrive at times of a rate-\(\lambda \) Poisson point process.
- Service times are IID Exponential(\(\mu \)).
- \(X(t) = \) number of customers at time \(t \).
- \(s \) servers.

Here \(X(t) \) is again a continuous-time Markov chain but with transition rates

\[
q_{i,i+1} = \lambda, \quad q_{i,i-1} = \mu \min(i,s).
\]

Now the stationary distribution is [board]

\[
w_i = \frac{1}{i!} (\lambda/\mu)^i, \quad 0 \leq i \leq s
\]

\[
= \frac{1}{s!} (\lambda/\mu)^s (\lambda/s\mu)^{i-s}, \quad i \geq s
\]

\[
\pi_i = \frac{w_i}{w}, \quad w = \sum_{j \geq 0} w_j
\]

provided \(\lambda < s\mu \).
General principle. In a queueing system, the **traffic intensity** \(\rho \) is defined as (arrival rate) / (maximum service rate).

So for M/M/s

\[
\rho = \frac{\lambda}{s\mu}
\]

A system will be stable (has a stationary distribution) if \(\rho < 1 \), but unstable (length of queue \(\to \infty \)) if \(\rho > 1 \).
We can calculate the same quantities for M/M/s as we did for M/M/1. A trick that makes the calculation simpler is to write the tail of the stationary distribution of X (number of customers) as
\[
P(X = s + i) = P(X \geq s)P(G = i)
\]
where G has shifted Geometric($p = 1 - \frac{\lambda}{\mu s}$) distribution.

Another trick is that the argument for our first general principle $L = \lambda W$ also shows
\[
L_0 = \lambda W_0
\]
where $W_0 =$ average waiting time per customer
$L_0 =$ average number of customers waiting in the system.

[calculation on board]
We get a formula for $W = \text{average time in M/M/s system per customer.}$

$$W = \frac{\mathbb{P}(X \geq s)}{\mu s - \lambda} + \frac{1}{\mu}.$$

Note we can calculate $\mathbb{P}(X \geq s)$ in terms of w or $\pi_0.$