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Information Theoretic Quantities

I Shannon entropy

I Kullback-Leibler Divergence or relative entropy

I f -divergences (or φ-divergences)

I Mutual information (Jensen-Shannon divergence) and its
counterpart for f -divergences

I Bregman divergences

I Renyi divergences

I Fisher information

I Metric entropy
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Shannon Entropy

I The Shannon entropy for a discrete random variable X is
defined by H(X ) = −

∑
x P(X = x) logP(X = x).

I H(X ) is the shortest expected codelength for X .

I Shannon entropy is central to the theory of MDL in statistics
which seeks to give a principled way to do model selection.
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Kullback-Leibler divergence

I The Kullback-Leibler divergence or relative entropy between
two probability measures P and Q is defined by
D(P||Q) :=

∫
p log(p/q) where p and q denote densities of P

and Q respectively.

I KL divergence has a close connection to binary hypothesis
testing.

I It is used as a notion of distance between P and Q. For
example, it is frequently as a loss function in statistical
estimation problems.
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f -divergences

I f -divergences are a general class of divergences (indexed by
convex functions f ) that include the KL divergence as a
special case.

I Let f : (0,∞)→ R be a convex function for which f (1) = 0.
The f -divergence between two probability measures P and Q
is defined by Df (P||Q) :=

∫
qf (p/q).

I Every f -divergence can be viewed as a measure of distance
between probability measures.
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Important Special Cases

I f (x) = x log x gives KL divergence.

I f (x) = |x − 1|/2 gives total variation distance
V (P,Q) =

∫
|p − q|/2.

I f (x) = (
√

x − 1)2 gives the square of the Hellinger distance:
H2(P,Q) :=

∫
(
√

p −√q)2.

I f (x) = (x − 1)2 gives the chi-squared divergence
χ2(P||Q) :=

∫
(p − q)2/q.
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Properties and Applications of f -divergences

I Fundamentally linked to binary hypothesis testing. Each
f -divergence can be viewed as the integrated Bayes risk in
testing where the integral is with respect to a distribution on
the prior (Liese, 2012)

I Linked to classification (Nguyen, Wainwright and Jordan,
2009)

I A recent paper uses a subclass of f -divergences for goodness
of fit testing (Jager and Wellner, 2006).
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Mutual Information

I The mutual information between two random variables Θ and
X is defined as the KL divergence between their joint
distribution and the product of their marginals.

I Mutual information appears quite often in statistics. For
example, it gives a principled way of finding non-informative
priors in Bayesian statistics.

I A theoretically sensible way of choosing a non-informative
prior distribution for Θ (data being X ) is to maximize∫

D(posterior ||prior)d(marginal) over all priors. It turns out
that this quantity is exactly the mutual information between
Θ and X . (Bernardo, 1979)
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Jensen-Shannon Divergence

I Another application of Mutual Information is in ICA. Given
(data from) a random vector X , the goal is to find a square
matrix A such that the components of AX are independent.
Theoretically, a sensible idea is to choose A so that the mutual
information between the components of AX is minimized.

I Consider the special case when Θ is uniformly distributed over
a finite set {θ1, . . . , θN}. Suppose that the conditional
distribution of X given Θ = θi is Pi for i = 1, . . . ,N.

I It is easy to see that the mutual information equals
J :=

∑
i D(Pi ||P̄)/N where P̄ := (P1 + · · ·+ PN)/N. This

quantity is also known as the Jensen-Shannon divergence.
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Jensen-Shannon Divergence and Multiple Testing

I J is clearly a variance-like quantity and it measures how close
together or far away the probabilities P1, . . . ,PN are.

I It is intuitively obvious therefore that J should be linked to
the problem of multiple hypothesis testing where, based on an
observation X , one needs to pick one of the hypotheses:
H1 : X ∼ P1, . . . ,HN : X ∼ PN .

I This connection is a standard result in information theory
called Fano’s inequality.
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Jensen-Shannon Divergence for f -divergences

I The Jensen-Shannon divergence, J, can be extended to
f -divergences in the obvious way:
Jf := infQ

∑
i Df (Pi ||Q)/N.

I It turns out that Jf is also related to multiple hypothesis
testing through an inequality that generalizes Fano’s
inequality to arbitrary f -divergences. (Gushchin, 2004 and
Guntuboyina, 2011).
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Bregman Divergences

I The Bregman divergences provide another class of divergences
that are indexed by convex functions and include both the
Euclidean distance and the KL divergence as special cases.

I Let φ be a differentiable strictly convex function. The
Bregman divergence Dφ is defined by

Dφ(x , y) := φ(x)− φ(y)− 〈x − y ,∇φ(y)〉

I The domain of φ is a space where convexity and
differentiability make sense (e.g., whole or a subset of Rd or
an Lp space).
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The main Bregman Divergence result

I For example, take φ(x) = ||x ||2 on Rd which gives the
Euclidean distance and φ(x) =

∑
j pj log pj on the simplex in

Rd which gives the KL divergence.

I Let X be a random quantity taking values in the domain of φ
and satisfying certain assumptions. Then EDφ(X , a) is
minimized over a in the domain of φ at a = EX . Moreover,
this property characterizes Bregman divergences.

I For example: (a) E(X − a)2 is minimized when a = EX and
(b)

∑
i D(Pi ||Q) is minimized when Q = (P1 + · · ·+ PN)/N.

I A consequence is that the posterior mean is the Bayes
estimator when the loss function is a Bregman divergence.
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Renyi Divergences

I These are another generalization of the KL divergence.

I The Renyi divergence between two probability distributions P
and Q is Dα(P||Q) :=

(
log
(∫

pαq1−α)) /(α− 1). When
α = 1, by a continuity argument, Dα is defined as KL
divergence.

I D1/2(P||Q) := −2 log
∫ √

pq is called Bhattacharyya
divergence (closely related to Hellinger distance). This
quantity is smaller than KL and, as a result, it is sometimes
easier to derive risk bounds with D1/2 as the loss function as
opposed to KL.
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Fisher Information

I Arguably, the most fundamental quantity in classical
(parametric) theoretical statistics.

I For a family of probability densities pθ(x), the Fisher
information is defined by

I (θ) =

∫ (
∂

∂θ
log pθ(x)

)2

pθ(x)dx

I The Cramer-Rao lower bound says that the inverse of the
Fisher information is a lower bound on the variance of any
unbiased estimator of θ. A related result is the Van Trees
inequality (Gill and Levit, 1995).
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Fisher Information (continued)

Fisher information is also key in the theory of efficiency:

The official dogma on estimation is this: good estimators converge
to the right thing and have limiting normal distributions.
Moreover, the variance of the limiting distribution can’t be smaller
than a quantity defined by the Fisher Information. The estimators
that achieve the asymptotic lower bound are called efficient.
Maximum likelihood estimators are efficient.

The dogma is not quite correct, but much of it can be rescued in
slightly altered form. - David Pollard (from his book Asymptopia).

Things go wrong via superefficiency (e.g, Hodges’s example).
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Fisher Information (continued)

I Fisher information is an information-theoretic quantity. It is
considered as the information that the data contains about
the parameter θ. Moreover, it is closely related to KL
divergence. For sufficiently regular parametric models {Pθ},
the KL divergence D(Pθ∗ ||Pθ) behaves approximately like a
quadratic form with matrix I (θ∗)/2 .

I Superefficiency can also be studied via the KL loss (Barron
and Hengartner, 1998).

I Fisher information also appears in Bayesian statistics through
the Jeffrey’s prior which can be shown to asymptotically solve
Bernardo’s non-informative prior problem (Clarke and Barron,
1993).
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Metric Entropy

I For a subset F of a metric space (X , ρ), the ε-covering
number M(F , ε; ρ) is defined as the smallest number of closed
balls of radius ε whose union contains F .

I The quantity Hε(F) := log M(F , ε; ρ) is called the ε-entropy
of F . This notion is due to Kolmogorov and is related to
Shannon entropy (Cover, Gacs and Gray, 1989).

I ε-entropy appears prominently in nonparametric estimation
(for an overview, see the chapter by Nikouline and Solev in
the book: Kolmogorov’s Heritage in Mathematics).
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Metric Entropy (continued)

I In nonparametric estimation problems, especially when
answering questions related to overfitting, one needs to
somehow measure the space of functions that are being fit to
the data. Metric entropy is a convenient way of doing this.

I Metric entropy comes up in characterizations of minimax rates
of convergence (Yang and Barron, 1999) and also in the study
of rates of convergence of sieved and penalized likelihood
estimators (see, e.g., Van de Geer’s book).

I In this class, we study examples of metric entropy calculations
(for smooth functions, convex sets and convex functions) and
then focus on the above applications.
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Tentative List of Topics

I f -divergences: properties, connections to testing, inequalities,
connections to classification and application to goodness of fit
testing.

I Fano’s inequality and extensions to f -divergences

I Mutual information, Bernardo’s non-informative prior problem
and solution via Jeffrey’s prior.

I Mutual information based ICA

I Minimum Description Length Principle

I Bregman Divergence and the mean-minimization property

I Fisher information: Cramer-Rao inequality, Van Trees
inequality, Efficiency, Superefficiency, Bernstein-Von Mises
theorem.

I Metric entropy: examples, minimax lower bounds, upper
bounds, rates of convergence of sieved and penalized
estimators.
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